Spelling suggestions: "subject:"sulfolobus solfataricus"" "subject:"isulfolobus solfataricus""
1 |
Differentielle Genexpression in dem hyperthermophilen Archaeon Sulfolobus solfataricus nach HitzeschockMartusewitsch, Erika. January 2004 (has links)
Darmstadt, Techn. Universiẗat, Diss., 2004. / Dateien im PDF-Format.
|
2 |
Characterisation of proteins involved in CRISPR-mediated antiviral defence in Sulfolobus solfataricusKerou, Melina L. January 2012 (has links)
One of the most surprising realisations to emerge from metagenomics studies in the early ‘00s was that the population of viruses and phages in nature is about 10 times larger than the population of prokaryotic organisms. Thus, bacteria and archaea are under constant pressure to develop resistance methods against a population of viruses with extremely high turnover and evolution rates, in what has been described as an evolutionary “arms race”. A novel, adaptive and heritable immune system encoded by prokaryotic genomes is the CRISPR/Cas system. Arrays of clustered regularly interspersed short palindromic repeats (CRISPR) are able to incorporate viral or plasmid sequences which are then used to inactivate the corresponding invader element via an RNA interference mechanism. A number of CRISPR-associated (Cas) protein families are responsible for the maintenance, expansion and function of the CRISPR loci. This system can be classified in a number of types and subtypes that differ widely in their gene composition and mode of action. This thesis describes the biochemical characteristics of CRISPR-mediated defense in the crenarchaeon Sulfolobus solfataricus. The process of CRISPR loci transcription and their subsequent maturation into small guide crRNA units by the processing endonuclease of the system (Cas6) is investigated. After this step, different pathways and effector proteins are involved in the recognition and silencing of DNA or RNA exogenous nucleic acids. This thesis reports the identification and purification of a native multiprotein complex from S. solfataricus P2, the Cmr complex, a homologue of which has been found to recognise and cleave RNA targets in P. furiosus. The recognition and silencing of DNA targets in E. coli has been shown to involve a multiprotein complex termed CASCADE as well as Cas3, a putative helicase-HD nuclease. S. solfataricus encodes orthologues for the core proteins of this complex, and the formation and function of an archaeal CASCADE is investigated in this thesis.
|
3 |
Protein Phosphorylation in ArchaeaThurston, Barbara 10 March 1997 (has links)
Protein phosphorylation constitutes an important mechanism for cellular regulation in both Eucarya and Bacteria. All living organisms evolved from a common progenitor; this implies that protein phosphorylation as a means of regulation also exists in Archaea. Previously, in the sulfur-dependent archaeon Sulfolobus solfataricus a gene was cloned encoding a protein-serine/threonine phosphatase that was similar to eucaryal protein-serine/threonine phosphatases type 1, 2A, and 2B. To identify protein phosphatases in other archaeons, oligonucleotides encoding conserved regions of eucaryal protein-serine/threonine phosphatases were used in the polymerase chain reaction to amplify genomic DNA from the methanogenic archaeon Methanosarcina thermophila. From the PCR reaction a fragment of DNA was isolated that encoded a portion of a protein phosphatase. Using this DNA fragment as a probe, the entire phosphatase gene was isolated. The amino acid sequence of the phosphatase encoded by this gene displayed greater than 30% identity with eucaryal protein-serine/threonine phosphatase type 1. The gene encoding the Methanosarcina phosphatase was expressed in Escherichia coli. The expressed protein exhibited protein serine phosphatase activity that was sensitive to inhibitors of eucaryal phosphatases such as okadaic acid, microcystin, calyculin, and tautomycin. In order to identify potential endogenous substrates of archaeal protein-serine/threonine phosphatases and kinases, a study was initiated to characterize the most prominent phosphoproteins in S. solfataricus. Cell extracts were incubated with [γ-³²P] ATP, MgCl₂, and MnCl₂, and the proteins in the extracts were separated by SDS-PAGE. Autoradiography of the gels revealed four prominent phosphoproteins with apparent molecular masses of 35, 46, and 50 kDa. N-terminal sequence analysis and enzymatic assays of the 35 kDa phosphoprotein identified this phosphoprotein as the a-subunit of succinyl-CoA synthetase. N-terminal sequence analysis and enzymatic assays revealed that the 50 kDa phosphoprotein was a hexosephosphate mutase. Neither the 50 kDa nor the 35 kDa phosphoprotein appeared to be the target of protein kinases or phosphatases. Therefore, while protein-serine phosphatases exist in Archaea, the targets of these phosphatases have yet to be determined. / Ph. D.
|
4 |
Etude de la production d'un antioxydant le 3,4-DHPA par Sulfolobus solfataricus, archée hyperthermophile par des approches multidisciplinaires.Comte, Alexia 12 July 2013 (has links)
L'objectif est de produire un antioxydant puissant, l'acide 3,4-dihydroxyphénylacétique (3,4-DHPA) à partir de la L-tyrosine chez l'archée hyperthermophile et acidophile, Sulfolobus solfataricus 98/2. Les microorganismes extrêmophiles possèdent des enzymes particulièrement résistantes et intéressantes pour l'industrie.Des cultures ont donc été réalisées en fermenteur contrôlé dans 4 conditions : (i) en présence de glucose avec ou sans L-tyrosine, (ii) en présence de phénol avec ou sans L-tyrosine. Il a été montré que le 3,4-DHPA est synthétisé seulement en présence de phénol et de L-tyrosine. Les gènes codant pour les enzymes impliquées dans cette voie métabolique et potentiellement responsables de la synthèse du 3,4-DHPA ont été identifiés par homologie de séquence chez cette archée.Des études transcriptomiques et protéomiques ont donc été initiées pour confirmer ces hypothèses et tenter de caractériser les enzymes impliquées dans ces voies métaboliques. Plusieurs toluène-4-monooxygénases (T4MO) et une catéchol 2,3-dioxygénase, impliquées dans le métabolisme du phénol et potentiellement dans la voie de dégradation de la L-tyrosine ont été identifiées. Leur production est soumise à une régulation transcriptionnelle dépendant de la présence de phénol. L'analyse des régions génomiques correspondantes a permis de mettre en évidence une région consensus qui pourrait être impliquée dans la fixation d'un facteur de transcription lors de la régulation par le phénol. Ces différentes études ont permis, de déterminer d'une part dans quelles conditions le 3,4-DHPA est synthétisé, d'autre part d'identifier les enzymes qui interviendraient dans le métabolisme de la L–tyrosine. / The aim is to produce a powerful antioxidant, 3,4-dihydroxyphenylacetic acid (3,4-DHPA) from L-tyrosine in the hyperthermophilic and acidophilus archaea, Sulfolobus solfataricus 98/2. Extremophiles microorganisms have resistant enzymes and interesting for industry. Cultures have been carried out in controlled bioreactor four conditions: (i) in the presence of glucose with or without L-tyrosine, (ii) in the presence of phenol with or without L-tyrosine. It has been shown that 3,4-DHPA is synthesized only in the presence of phenol and L-tyrosine. The genes encoding enzymes involved in the metabolic and potentially responsible for the synthesis of 3,4-DHPA pathway have been identified by sequence homology in S. solfataricus.Des transcriptomic and proteomic studies have therefore been initiated to confirm these hypothesis and attempt to characterize the enzymes involved in these pathways. Several toluene-4-monooxygenase (T4MO) and catechol 2,3-dioxygenase involved in the metabolism of phenol and potentially in the degradation pathway of L-tyrosine were identified. Their production is subjected to a dependent transcriptional regulation of the presence of phenol. The analysis of the corresponding genomic regions has highlighted a consensus region that could be involved in the binding of a transcription factor in the regulation of phenol. These studies helped to determine the one hand the conditions under which 3,4-DHPA is synthesized, secondly to identify enzymes that intervene in the metabolism of L-tyrosine.
|
5 |
Präparation und röntgenkristallographische Untersuchungen an archaebakteriellen Box C/D sRNPs und einer neuartigen Glukosyltransferase aus Thermotoga maritima MSB8 / Preparation and crystallographic studies of an archaebacterial box C/D sRNP complex and a novel glucosyltransferase from Thermotoga maritima MSB8Steinke, Carmen 03 November 2004 (has links)
No description available.
|
6 |
CRISPR RNA biogenesis by a Cas6 nucleaseSokolowski, Richard D. January 2015 (has links)
Clustered regularly interspaced short palindromic repeats (CRISPRs) and associated (Cas) proteins form the basis of a prokaryotic adaptive immune system. Acquired sections of viral DNA are stored within the host genome as ‘spacers' flanked by ‘repeat' sequences. The CRISPR arrays are transcribed and processed to release mature CRISPR RNAs (crRNAs) – containing a single, intact spacer sequence – that are used by effector complexes to base-pair with matching hostile genetic elements and silence future infections. crRNA-biogenesis is thus an essential step within the defence pathway. Within Type I and III systems, the primary processing of the CRISPR transcript at repeat sites is performed almost exclusively by the CRISPR-specific riboendonuclease, Cas6. This thesis seeks to probe the catalytic mechanism of a Cas6 enzyme from the crenarchaeon Sulfolobus solfataricus (sso). Despite analogous generation of crRNA, ssoCas6 paralogues differ from previously characterised Cas6 examples in their lack of a canonical active site histidine residue. The work here builds on recent crystallographic evidence that the ssoCas6-1 paralogue unexpectedly adopts a dimeric conformation (PDB 3ZFV, 4ILR), to show that not only is the ssoCas6-1 dimer stable in solution but that this atypical arrangement is important to the activity of this particular enzyme. Furthermore, the ssoCas6-1 paralogue is shown to be the first in this family of endonucleases to employ multiple-turnover kinetics. The widespread diversity in Cas6 catalytic mechanisms reflects the plastic nature of the Cas6 active site and rapid co-evolution with substrate repeat sequences. The CRISPR/Cas environment within S. solfataricus is highly complex, containing three co-existing system types (Type I-A, III-A, III-B), five Cas6 paralogues and two families of CRISPR loci (AB and CD) that differ by repeat sequence. By probing the activity of an additional ssoCas6 paralogue (ssoCas6-3), which reveals different substrate specificities to those of ssoCas6-1, evidence emerges for functional coupling between ssoCas6 paralogues and downstream effector complexes, sufficient to regulate crRNA uptake and possibly even complex assembly.
|
7 |
Pyruvoyl dependent arginine decarboxylases from Chlamydiae and CrenarchaeaGiles, Teresa Neelima 06 November 2012 (has links)
Arginine decarboxylase is a key enzyme involved in the polyamine pathway of organisms. Pyruvoyl-dependent arginine decarboxylases are expressed in the form of proenzymes that self-cleave to form N-terminal [beta] and C-terminal [alpha] subunits generating an active pyruvoyl group at the [alpha] terminus. We have identified an archaeal homolog of a pyruvoyl-dependent arginine decarboxylase in Chlamydophila pneumoniae that could play a role in the persistence of the organism in the host. The recombinant enzyme showed highest activity at pH 3.4, which is the lowest optimum pH ever reported for a pyruvoyl dependent arginine decarboxylase. The proton-consuming decarboxylation raises intracellular pH, and thereby plays a role in acid-resistance. It could inhibit the pro-inflammatory nitric oxide synthase resulting in asymptomatic infection. A variant protein Thr⁵²Ser at the predicted cleavage site showed less pro-enzyme cleavage and activity compared to the wild-type. The homologs of arginine decarboxylase and flanking arginine-agmatine antiporter were also found in different biovariants of Chlamydia trachomatis. In the invasive L2 strain of C. trachomatis, the presence of a nonsense codon in the gene encoding arginine decarboxylase enzyme prevented the expression of an active enzyme. The variant protein with tryptophan replacing nonsense codon restored arginine decarboxylase activity. The non-invasive D strain of C. trachomatis had an intact arginine decarboxylase gene, but it was recombinantly expressed as a proenzyme that was uncleaved. The arginine-agmatine antiporters from both the strains were active and transported tritiated arginine into their cells. The polyamine pathway of the crenarchaeon Sulfolobus solfataricus uses arginine to make putrescine, but the organism lacks homologs of arginine decarboxylase. However, it has two paralogs of pyruvoyl dependent S-adenosylmethionine decarboxylase − SSO0536 and SSO0585. These enzymes were recombinantly expressed as pro-enzymes that self-cleaved into [beta] and [alpha] subunits. Even with a 47% amino acid sequence identity, the SSO0536 protein exhibited significant arginine decarboxylase activity whereas SSO0585 protein had significant S-adenosylmethionine decarboxylase activity. This is the first report of an S-adenosylmethionine decarboxylase enzyme showing alternative decarboxylase activity. The chimeric protein with the [alpha]-subunit of SSO0585 and [beta]-subunit of SSO0536 had arginine decarboxylase activity, suggesting that the residues responsible for substrate recognition are located in the amino terminus. / text
|
8 |
A Multi-Disciplinary Investigation of Essential DNA Replication ProteinsGadkari, Varun V. 03 August 2017 (has links)
No description available.
|
Page generated in 0.0382 seconds