• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • Tagged with
  • 10
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of mouse cytomegalovirus MHC-1 homologs

Mans, Janet 20 March 2009 (has links)
Mouse cytomegalovirus (MCMV), a β-herpesvirus, encodes the m145 family of glycoproteins. Several members of this family are predicted to adopt the MHC-I fold although their amino acid sequences exhibit less than 30% identity to classical MHC-I (MHC-Ia) proteins. Our aim was to determine how related the viral proteins are to MHCIa and characterize them in terms of cellular expression, structure and function. We studied the cellular localization of FLAG-tagged m17, M37, m145, m151, m152, m153 and m155 in transfected mouse fibroblasts. Flow cytometry analysis of transfected cells showed that M37, m145, m151 and m153 localize predominantly to the cell surface, whereas the majority of m17, m152 and m155 remain inside the cell. MHC-Ia proteins require assembly with β2-microglobulin (β2m) and peptide for stable cell surface expression. Transient transfection studies with β2m- or transporter associated with antigen (TAP)-deficient cell lines revealed that M37, m145, m151 and m153 could be expressed stably at the cell surface in the absence of β2m or TAP expression. To generate protein material for crystallization screening we evaluated both bacterial and insect cell expression systems. Although most m145 family members could be expressed in bacteria in insoluble inclusion bodies, none of the proteins could be accurately refolded. Since M37, m151 and m153 are cell surface molecules with the potential to bind receptors on host cells, we focused our structure determination efforts on them and evaluated their expression in Drosophila S2 insect cells. The extracellular domains of all three proteins expressed at significant levels, however, m151 tended to aggregate and precipitate over time. M37 and m153 were stable and could easily be purified to homogeneity. Size exclusion chromatography and SDS-PAGE analysis of m153 suggested that it forms a non-covalent homodimer. Analytical ultracentrifugation experiments confirmed this observation and provided an estimated molecular mass of 78.8 kDa. Enzymatic and mass spectrometry analyses showed that insect-expressed m153 is highly glycosylated. We tested a wide range of crystallization conditions for m153. It formed very fragile crystals and after optimization we obtained several that diffracted to 2.3 Å. To determine the structure of m153, we prepared a seleno-methionine derivative in insect cells, collected data on a single crystal and solved the phases by the single anomalous dispersion method. The m153 model was refined at 2.4 Å resolution to final Rcryst and Rfree of 23% and 27.9%, respectively. The m153 homodimer is formed by two MHC-I-like heavy chains, each consisting of two α-helices arranged on a platform of seven β-strands and an Ig-like α3 domain. The monomers are arranged “head-to-tail”, with the α1α2 platform domain of one chain interacting with the Ig-like α3 domain of the other. The α1 and α2 helices are closely juxtaposed and do not form a peptide binding groove. Three N-linked carbohydrate residues were visualized in the crystal structure. Major deviations from the MHC-I fold include an extended N-terminus, which originates next to the α3 domain, and an elongated α2 helix (designated H2b) that reaches down towards the α3 domain. In addition, m153 has two unique disulfide bonds, one between strands of the platform domain and another that links the extended N-terminus to the H2b helix. Both unique disulfide bonds were verified by mass spectrometry. The canonical Ig-fold disulfide bond is present in the α3 domain. Alanine mutation of four amino acids involved in interface hydrogen bonds abolished m153 dimer formation, validating the dimer interface visualized in the structure. The crystal structure of m153, together with the recently reported m157 structure, confirms the MHC-I fold for the MCMV m145 family and highlights shared structural features in the m145 family. We have demonstrated dimerization of full-length m153 in mammalian cells by bimolecular fluorescence complementation and co-immunoprecipitation studies. Further, we have shown that m153 is expressed at the surface of MCMV-infected cells at early times after infection. To initiate a search for host ligands of m153, we generated a reporter cell line by introducing an m153-human zeta chain fusion protein into 43.1 cells that contain an NFAT-driven GFP construct. While a variety of mouse cell lines were unable to stimulate the m153-reporter cells, coculture with mouse splenocytes specifically induced GFP production in m153-reporters but not in the parental or control reporter cell lines. We identified conventional CD11c+ and plasmacytoid dendritic cells (DCs) as the most potent m153-reporter cell stimulating populations in the spleen. The stimulation was shown to be m153-specific, dose- and cell contact-dependent. DCs derived from bonemarrow cultures also potently stimulated the m153-reporter cells. Macrophages and NK cells exhibited weaker stimulation of the reporter cells, indicating lower levels of ligand or that only small subsets of the cells express a ligand. DCs from several mouse strains, but not from the rat, stimulated m153-reporter cells. We evaluated DC surface phenotype and migratory capacity after coculture with m153-reporter cells or on m153-coated plates, but could not detect any changes induced specifically by the presence of m153.
2

Understanding the role of Topoisomerase 2 in chromosome associations

Hohl, Amber Marie 01 January 2012 (has links)
Homologous chromosomes display associations in many organisms. Drosophila melanogaster (here after, Drosophila) serves as an excellent model to study pairing interactions since chromosomes are paired in all somatic cells throughout development. For many genes, the degree of homolog association influences gene expression. These effects, collectively referred to as transvection, can promote gene activation or silencing. Requirements for transvection are poorly understood. Chapter One reviews what is known about transvection in Drosophila and chromosome interactions in mammals. Recent cell culture studies implicated a requirement for Topoisomerase 2 (Top2) in chromosome pairing. Top2 encodes an ATP dependent homodimeric enzyme that generates double stranded breaks to change DNA topology. This enzyme is a common target of anticancer drugs due to its role in DNA metabolism. To understand the in vivo role of Drosophila Top2, an EMS screen was completed. Chapter Two describes the identification and characterization of fifteen new EMS generated Top2 mutations. Fifteen null and hypomorphic alleles were obtained, including one that displays temperature sensitivity. Molecular analyses of these alleles uncovered single or multiple base pair substitutions within the coding region of each mutant gene. Even though flies carrying individual missense alleles in trans to a deficiency are inviable, heteroallelic combinations of several missense alleles produced viable flies, including two lines carrying mutations that display resistance to anti-cancer drugs. These data indicate that Top2 activity can be restored by dimerization of defective subunits. Our new Top2 alleles establish a novel allelic series and provide a platform for understanding drug resistance. In Chapter Three, the role of Top2 in chromosome associations was tested to determine whether mutations in Top2 disrupted transvection. Viable heteroallelic combinations of Top2 mutations were used to test transvection at three classically studied loci. For each gene, homologous interactions were analyzed by screening for alterations in pairing-dependent changes in phenotype involving transvecting alleles. Only one of the three genes tested displayed phenotypic changes in Top2 complementing adults that were consistent with an alteration in pairing dependent changes in expression. Transcript levels were assessed at the three genes studied that display transvection. Our studies indicate that changes in the phenotype, due to altered Top2, are likely gene specific transcriptional changes. Further investigation of gene associations in Top2 mutants employed fluorescence in situ hybridization (FISH). These studies showed that all loci examined were paired near wild type levels, suggesting that Top2 does not globally disrupt homolog associations in vivo. The differences observed in Top2 function in vivo and in vitro may be explained by two possibilities. First, the probes studied differ from those used in vitro, indicating that different genetic loci may have different sensitivities to unpairing. Second, Top2 plays a role in the segregation of sister chromatids during anaphase and loss of Top2 causes improper resolution of chromosomes resulting in aneuploidy. In cell culture, cells were allowed to go through one division and then were subsequently fixed, permitting analyses on all cells. It is possible that nuclei exhibiting aneuploidy have undergone cell death in vivo, explaining why we do not see increased amounts of unpairing. In conclusion, Top2 contributions to nuclear functions are complex. Loss of Top2 may result in subtle changes in pairing that may affect transcription and transvection.
3

Insight into three putative Cercospora zeina effector genes and the role they play in virulence

Lombard, Brigitte January 2014 (has links)
Maize (Zea mays) is globally considered as an important cereal crop, and a major staple food in developing countries such as Africa (WARD et al. 1999). In South Africa, maize is considered the most important grain crop as it is the main feed grain used for animals and a staple food for the population (FAO 2012). Maize can also be used for the production of maize-based ethanol, which can be used as a bio-fuel. In the USA, approximately 40% (11 million tonnes) of maize produced in 2012 was used for the production of bio-fuel (FAO 2012). Maize production in Africa was estimated to be less than two and on average 1.4 tons per hectare and remains below world average (FAO 2012). It was expected that South African crop production would decrease by approximately six percent during the 2012/2013 growing season as droughts during February and March 2013 in the North West and Free State provinces led to below-average maize yields in these production areas (FAO 2012; USDA 2013). Over the last few years maize production output has not been increasing together with the increasing population growth rate and thus puts pressure on commercial farmers to produce more maize for food security purposes and economical growth. The FAO states that agricultural production still needs to increase by up to 60% (80% in developing countries) within the next four years to be able to cope with an estimated global population growth of 39% by 2050. / Dissertation (MSc)--University of Pretoria, 2014. / National Research Foundation (NRF) / Plant Science / MSc / Unrestricted
4

The Divergence of Flowering Time Modulated by FT/TFL1 Is Independent to Their Interaction and Binding Activities

Wang, Zhen, Yang, Ruiguang, Devisetty, Upendra K., Maloof, Julin N., Zuo, Yang, Li, Jingjing, Shen, Yuxiao, Zhao, Jian, Bao, Manzhu, Ning, Guogui 08 May 2017 (has links)
FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) proteins share highly conserved amino acid residues but they play opposite regulatory roles in promoting and repressing the flowering response, respectively. Previous substitution models and functional analysis have identified several key amino acid residues which are critical for the promotion of flowering. However, the precise relationship between naturally occurring FT/TFL1 homologs and the mechanism of their role in flowering is still unclear. In this study, FT/TFL1 homologs from eight Rosaceae species, namely, Spiraea cantoniensis, Pyracantha fortuneana, Photinia serrulata, Fragaria ananassa, Rosa hybrida, Prunus mume, Prunus persica and Prunus yedoensis, were isolated. Three of these homologs were further characterized by functional analyses involving site-directed mutagenesis. The results showed that these FT/TFL1 homologs might have diverse functions despite sharing a high similarity of sequences or crystal structures. Functional analyses were conducted for the key FT amino acids, Tyr-85 and Gln-140. It revealed that TFL1 homologs cannot promote flowering simply by substitution with key FT amino acid residues. Mutations of the IYN triplet motif within segment C of exon 4 can prevent the FT homolog from promoting the flowering. Furthermore, physical interaction of FT homologous or mutated proteins with the transcription factor FD, together with their lipid-binding properties analysis, showed that it was not sufficient to trigger flowering. Thus, our findings revealed that the divergence of flowering time modulating by FT/TFL1 homologs is independent to interaction and binding activities.
5

Identification of factors regulating guanosine tetraphosphate (ppGpp) biosynthesis in Arabidopsis thaliana / L'identification des facteurs qui modulent la biosynthèse de ppGpp chez Arabidopsis thaliana

Ke, Hang 30 September 2016 (has links)
La ppGpp et la pppGpp, qui sont synthétisées/hydrolysées par les RelA/Spot homologs (RSH), jouent un rôle centrale dans l’adaptation des bactéries contre la privation des nutriments et les stress environnementaux. Les enzymes RSH et ppGpp ont été découverts dans le chloroplaste. Il a été récemment démontré que ppGpp joue un rôle comme répresseur globale de l’expression de gènes chloroplastiques. Certains stresses environnementaux et hormones induisent l’accumulation de ppGpp chez les plantes, cependant le mécanisme moléculaire n’est pas encore connu. Ici nous nous sommes intéressés à découvrir les facteurs qui interagissent avec les RSH, et qui donc sont susceptible de réguler le métabolisme du ppGpp. En utilisant un crible double-hybridation de levure nous avons identifiées des proteines qui interagissent avec les RSH y compris l’acyl carrier protein (ACP) et des GTPases associées au ribosome. ACP et RSH1 semblent être indispensables pour l’accumulation de ppGpp induite par la carence de la biosynthèse des acides gras, tandis que le ppGpp et un GTPase associé au ribosome contribuent à la résistance contre le heat-shock. Nous avons aussi effectué du co-immunoprécipitation spectrométrie de masse avec RSH1. Plusieurs protéines ont été identifiées y compris des protéines associées au nucléoid et des protéines liées à la signalisation chloroplastique, indiquant que RSH1 pourrait etre impliqué dans la machinerie de transcription chloroplastique. Nos résultats montrent que chez les plantes le ppGpp joue un rôle non seulement comme chez les bacteriés mais aussi participe à de nombreux processus biologiques qui sont spécifiques aux plantes. / Guanosine tetra-phosphate and penta-phosphate (ppGpp and pppGpp), which are synthesized/hydrolyzed by RelA/Spot homolog (RSH) enzymes, play a central role in the adaptation of bacteria to nutrient limitation or other stresses. Both RSH enzymes and ppGpp are present in the chloroplasts of plants. Recent studies have shown that ppGpp acts as a global repressor of chloroplast gene expression. Certain environmental stresses and hormones induce ppGpp accumulation in chloroplasts, however the molecular mechanisms underlying the activation of ppGpp signalling in response to such stimuli is essentially unknown. We searched for factors that interact with RSH enzymes and so could play a role in activating ppGpp signalling. Using a targeted yeast two hybrid screen several proteins were identified that interact with RSH enzymes including acyl carrier protein (ACP) and ribosome associated GTPases. ACP and RSH1 appear to be required for ppGpp induction in response to fatty acid biosynthesis depletion, while ppGpp and an RSH-interacting GTPase contribute to the resistance of plants to heat shock. We also performed non-targeted co-immunoprecipitation mass spectrometry (CoIP-MS) of RSH1. New RSH interaction candidates were identified, including plastid nucleoid associated proteins and chloroplast signalling proteins, suggesting that RSH1 may be associated with the plastid transcription machinery. Our results give new insights into ppGpp signalling, and show that some elements are conserved between plants and bacteria, while others are implicated in plant-specific biological processes.
6

Similaridades entre o Transcriptoma Humano e Murino Focando Genes Situados em Regiões de Susceptibilidade ao Diabetes mellitus do Tipo 1 / Similarities between Human and Mouse Transcriptomes Focusing Genes Positioned in Type 1 Diabetes mellitus Susceptibility Regions

Renata dos Santos Almeida 24 October 2012 (has links)
O diabetes mellitus do tipo 1 (DM1) é uma doença autoimune que se desenvolve a partir da ação combinada de múltiplos fatores genéticos e ambientais, sendo caracterizada pela perda seletiva das células produtoras de insulina nas ilhotas pancreáticas em indivíduos geneticamente susceptíveis. O HLA de classe II, localizado no cromossomo humano 6p21.3, representa uma das regiões genômicas mais importantes associadas ao DM1, embora evidências apontem para a participação de diversos outros loci na susceptibilidade à doença. Essas regiões cromossômicas poderiam apresentar genes funcionalmente ativos com perfis transcricionais semelhantes ao camundongo Mus musculus, muito utilizado como modelo animal para o estudo de doenças humanas. Para testar esta hipótese, foi realizada análise dos perfis transcricionais de linfócitos periféricos provenientes de pacientes com DM1 e camundongos NOD (Non-obese diabetic) diabéticos, focando os genes situados em regiões de susceptibilidade. Foram utilizados dados de microarrays do genoma funcional completo da plataforma Agilent (Whole genome one-color Agilent 4x44k) de dezenove pacientes e oito controles, e de camundongos NOD pré-diabéticos e diabéticos. A linhagem NOD foi utilizada no estudo, pois representa um modelo experimental para o estudo do diabetes autoimune e desenvolve a doença espontaneamente. Para a análise dos dados de microarrays foi utilizado o software GeneSpring GX e os programas Cluster e TreeView. A modulação transcricional dos genes foi estabelecida comparando-se os pacientes com os controles, e os animais diabéticos com os pré-diabéticos. Os loci de susceptibilidade ao DM1 humano foram definidos utilizando-se uma tabela curada disponível no banco T1DBase (http://t1dbase.org) e seus correspondentes murinos, segundo o banco de dados Homology Maps (http://www.ncbi.nlm.nih.gov/projects/homology/maps/). Foram considerados para o estudo apenas os pares de homólogos com expressão em linfócitos humanos e murinos conforme os dados disponíveis no banco BioGPS (http://biogps.org). Avaliamos se os genes murinos estavam situados em regiões de susceptibilidade (Idd) ao DM1 do camundongo, utilizando-se o T1DBase. Todos os genes humanos selecionados com homologia com camundongo foram mapeados quanto à localização cromossômica, buscando-se por regiões de sintenia entre as duas espécies por meio da ferramenta Synteny disponível no banco de dados Ensembl Genome Browser (http://www. ensembl.org/). Os pares de homólogos situados em regiões sintênicas foram então verificados quanto à similaridade de sequência de DNA e identidade protéica entre humano e camundongo, utilizando-se dados do HomoloGene (http://www.ncbi.nlm.nih. gov/homologene/). Foram analisados 463 genes humanos, dos quais 73 apresentaram correspondência em camundongo e expressão em linfócitos T. Dos 73 genes identificados, 31 deles apresentaram mesma modulação de fold change entre as duas espécies, com 12 mapeados em regiões de susceptibilidade murinas (Idd). Dos doze genes em regiões Idd, 4 se apresentaram induzidos: APOM (Apom), COL11A2 (Col11a2), HLA-DOB (H2-Ob) e PRR3 (Prr3); e 8 reprimidos: CYP21A2 (Cyp21a1), STK19 (Stk19), PHTF1 (Phtf1), RSBN1 (Rsbn1), CDSN (Cdsn), TRIM39 (Trim39), VARS2 (Vars2) e IL21 (Il21). Foram identificados 59 genes em regiões de sintenia humano-camundongo, com 58 apresentando similaridade na sequência de DNA acima de 70% entre as duas espécies, e identidade de sequência de aminoácidos das respectivas proteínas variando de 61,4 a 99,7%. Esses resultados demonstram que a maioria dos genes estudados apresenta conservação funcional, como indicado pelo alto grau de identidade das proteínas. Além disso, evidenciou-se um compartilhamento de perfis de expressão de genes em regiões de susceptibilidade ao DM1 humano e murino, contribuindo para um melhor conhecimento das semelhanças entre o modelo animal (linhagem NOD) e o diabetes autoimune humano. / Type 1 diabetes (T1D) is a common autoimmune disease that arises from multiple genetic and environmental risk factors. It is characterized by selective loss of insulin-producing -cells in the pancreatic islets in genetically susceptible individuals. The HLA class II locus on human chromosome 6p21.3 represents one of the most important genomic regions associated with T1D but there are evidences for the participation of several others along the chromosomes, which also contribute to disease susceptibility. These chromosomal regions may harbor functional genes with transcriptional profiles similar to those presented by the mouse Mus musculus, an animal model highly used in researches of human diseases. To test this hypothesis, it was performed a transcriptome profiling analysis of peripheral lymphocytes from T1D patients and diabetic NOD (Non-obese diabetic) mice focusing those genes positioned in chromosomal susceptibility regions. To perform this analysis, whole genome one-color Agilent 4x44k microarrays were used from 19 patients and 8 controls and from pre-diabetic and diabetic NOD mice. NOD strain was used since It is a well established mouse model for T1D. GeneSpring GX software and Cluster and TreeView programs were applied for microarray data analysis. The transcriptional modulation was established by comparisons of diabetic patients versus controls and diabetic versus pre-diabetic animals. The human T1D susceptibility loci were defined using a curated human dataset available in T1DBase (http://t1dbase.org) and mouse counterparts according to Homology Maps database (http://www.ncbi.nlm.nih.gov/projects/homology/maps/). For the present study we considered only homolog gene pairs with expression in human and mouse lymphocytes taking into account data available in BioGPS database (http://biogps.org). Following these procedures, mouse genes were checked for chromosome location in order to subserve the establishment of syntenic regions. The human-mouse syntenic regions were defined using Synteny tool from Ensembl Genome Browser (http://www.ensembl.org/). The homolog gene pairs located in human-mouse syntenic regions were checked for DNA sequence similarity and protein identity according to HomoloGene data (http://www.ncbi.nlm.nih.gov/homologene/). The 463 human genes were analyzed with 73 presenting murine counterparts and expression in lymphocytes. From these, 31 genes presented same fold change modulation in both species, with 12 of them mapped in murine diabetes susceptibility regions (Idd). The 12 genes in Idd regions showed different transcriptional modulations, 4 featured up-regulation: APOM (Apom), COL11A2 (Col11a2), HLA-DOB (H2- Ob) e PRR3 (Prr3); and 8 down-regulation: CYP21A2 (Cyp21a1), STK19 (Stk19), PHTF1 (Phtf1), RSBN1 (Rsbn1), CDSN (Cdsn), TRIM39 (Trim39), VARS2 (Vars2) e IL21 (Il21). 51 genes were identified in human-mouse syntenic regions with 58 presenting DNA sequence similarity above 70% and protein identity ranging from 61,4 to 99,7%. These results show that most genes studied present functional conservation, as indicated by the high degree of identity of the proteins. Additionally, it was observed shared expression profiles between human and murine T1D susceptibility regions. These results contribute to a better understanding of similarities between the animal model (NOD mouse strain) and human autoimmune diabetes.
7

Identification Of Novel MLH 1p Interacting Proteins By Biochemical And Genetic Methods

Kumaran, M 01 1900 (has links) (PDF)
No description available.
8

Similaridades entre o Transcriptoma Humano e Murino Focando Genes Situados em Regiões de Susceptibilidade ao Diabetes mellitus do Tipo 1 / Similarities between Human and Mouse Transcriptomes Focusing Genes Positioned in Type 1 Diabetes mellitus Susceptibility Regions

Almeida, Renata dos Santos 24 October 2012 (has links)
O diabetes mellitus do tipo 1 (DM1) é uma doença autoimune que se desenvolve a partir da ação combinada de múltiplos fatores genéticos e ambientais, sendo caracterizada pela perda seletiva das células produtoras de insulina nas ilhotas pancreáticas em indivíduos geneticamente susceptíveis. O HLA de classe II, localizado no cromossomo humano 6p21.3, representa uma das regiões genômicas mais importantes associadas ao DM1, embora evidências apontem para a participação de diversos outros loci na susceptibilidade à doença. Essas regiões cromossômicas poderiam apresentar genes funcionalmente ativos com perfis transcricionais semelhantes ao camundongo Mus musculus, muito utilizado como modelo animal para o estudo de doenças humanas. Para testar esta hipótese, foi realizada análise dos perfis transcricionais de linfócitos periféricos provenientes de pacientes com DM1 e camundongos NOD (Non-obese diabetic) diabéticos, focando os genes situados em regiões de susceptibilidade. Foram utilizados dados de microarrays do genoma funcional completo da plataforma Agilent (Whole genome one-color Agilent 4x44k) de dezenove pacientes e oito controles, e de camundongos NOD pré-diabéticos e diabéticos. A linhagem NOD foi utilizada no estudo, pois representa um modelo experimental para o estudo do diabetes autoimune e desenvolve a doença espontaneamente. Para a análise dos dados de microarrays foi utilizado o software GeneSpring GX e os programas Cluster e TreeView. A modulação transcricional dos genes foi estabelecida comparando-se os pacientes com os controles, e os animais diabéticos com os pré-diabéticos. Os loci de susceptibilidade ao DM1 humano foram definidos utilizando-se uma tabela curada disponível no banco T1DBase (http://t1dbase.org) e seus correspondentes murinos, segundo o banco de dados Homology Maps (http://www.ncbi.nlm.nih.gov/projects/homology/maps/). Foram considerados para o estudo apenas os pares de homólogos com expressão em linfócitos humanos e murinos conforme os dados disponíveis no banco BioGPS (http://biogps.org). Avaliamos se os genes murinos estavam situados em regiões de susceptibilidade (Idd) ao DM1 do camundongo, utilizando-se o T1DBase. Todos os genes humanos selecionados com homologia com camundongo foram mapeados quanto à localização cromossômica, buscando-se por regiões de sintenia entre as duas espécies por meio da ferramenta Synteny disponível no banco de dados Ensembl Genome Browser (http://www. ensembl.org/). Os pares de homólogos situados em regiões sintênicas foram então verificados quanto à similaridade de sequência de DNA e identidade protéica entre humano e camundongo, utilizando-se dados do HomoloGene (http://www.ncbi.nlm.nih. gov/homologene/). Foram analisados 463 genes humanos, dos quais 73 apresentaram correspondência em camundongo e expressão em linfócitos T. Dos 73 genes identificados, 31 deles apresentaram mesma modulação de fold change entre as duas espécies, com 12 mapeados em regiões de susceptibilidade murinas (Idd). Dos doze genes em regiões Idd, 4 se apresentaram induzidos: APOM (Apom), COL11A2 (Col11a2), HLA-DOB (H2-Ob) e PRR3 (Prr3); e 8 reprimidos: CYP21A2 (Cyp21a1), STK19 (Stk19), PHTF1 (Phtf1), RSBN1 (Rsbn1), CDSN (Cdsn), TRIM39 (Trim39), VARS2 (Vars2) e IL21 (Il21). Foram identificados 59 genes em regiões de sintenia humano-camundongo, com 58 apresentando similaridade na sequência de DNA acima de 70% entre as duas espécies, e identidade de sequência de aminoácidos das respectivas proteínas variando de 61,4 a 99,7%. Esses resultados demonstram que a maioria dos genes estudados apresenta conservação funcional, como indicado pelo alto grau de identidade das proteínas. Além disso, evidenciou-se um compartilhamento de perfis de expressão de genes em regiões de susceptibilidade ao DM1 humano e murino, contribuindo para um melhor conhecimento das semelhanças entre o modelo animal (linhagem NOD) e o diabetes autoimune humano. / Type 1 diabetes (T1D) is a common autoimmune disease that arises from multiple genetic and environmental risk factors. It is characterized by selective loss of insulin-producing -cells in the pancreatic islets in genetically susceptible individuals. The HLA class II locus on human chromosome 6p21.3 represents one of the most important genomic regions associated with T1D but there are evidences for the participation of several others along the chromosomes, which also contribute to disease susceptibility. These chromosomal regions may harbor functional genes with transcriptional profiles similar to those presented by the mouse Mus musculus, an animal model highly used in researches of human diseases. To test this hypothesis, it was performed a transcriptome profiling analysis of peripheral lymphocytes from T1D patients and diabetic NOD (Non-obese diabetic) mice focusing those genes positioned in chromosomal susceptibility regions. To perform this analysis, whole genome one-color Agilent 4x44k microarrays were used from 19 patients and 8 controls and from pre-diabetic and diabetic NOD mice. NOD strain was used since It is a well established mouse model for T1D. GeneSpring GX software and Cluster and TreeView programs were applied for microarray data analysis. The transcriptional modulation was established by comparisons of diabetic patients versus controls and diabetic versus pre-diabetic animals. The human T1D susceptibility loci were defined using a curated human dataset available in T1DBase (http://t1dbase.org) and mouse counterparts according to Homology Maps database (http://www.ncbi.nlm.nih.gov/projects/homology/maps/). For the present study we considered only homolog gene pairs with expression in human and mouse lymphocytes taking into account data available in BioGPS database (http://biogps.org). Following these procedures, mouse genes were checked for chromosome location in order to subserve the establishment of syntenic regions. The human-mouse syntenic regions were defined using Synteny tool from Ensembl Genome Browser (http://www.ensembl.org/). The homolog gene pairs located in human-mouse syntenic regions were checked for DNA sequence similarity and protein identity according to HomoloGene data (http://www.ncbi.nlm.nih.gov/homologene/). The 463 human genes were analyzed with 73 presenting murine counterparts and expression in lymphocytes. From these, 31 genes presented same fold change modulation in both species, with 12 of them mapped in murine diabetes susceptibility regions (Idd). The 12 genes in Idd regions showed different transcriptional modulations, 4 featured up-regulation: APOM (Apom), COL11A2 (Col11a2), HLA-DOB (H2- Ob) e PRR3 (Prr3); and 8 down-regulation: CYP21A2 (Cyp21a1), STK19 (Stk19), PHTF1 (Phtf1), RSBN1 (Rsbn1), CDSN (Cdsn), TRIM39 (Trim39), VARS2 (Vars2) e IL21 (Il21). 51 genes were identified in human-mouse syntenic regions with 58 presenting DNA sequence similarity above 70% and protein identity ranging from 61,4 to 99,7%. These results show that most genes studied present functional conservation, as indicated by the high degree of identity of the proteins. Additionally, it was observed shared expression profiles between human and murine T1D susceptibility regions. These results contribute to a better understanding of similarities between the animal model (NOD mouse strain) and human autoimmune diabetes.
9

Pyruvoyl dependent arginine decarboxylases from Chlamydiae and Crenarchaea

Giles, Teresa Neelima 06 November 2012 (has links)
Arginine decarboxylase is a key enzyme involved in the polyamine pathway of organisms. Pyruvoyl-dependent arginine decarboxylases are expressed in the form of proenzymes that self-cleave to form N-terminal [beta] and C-terminal [alpha] subunits generating an active pyruvoyl group at the [alpha] terminus. We have identified an archaeal homolog of a pyruvoyl-dependent arginine decarboxylase in Chlamydophila pneumoniae that could play a role in the persistence of the organism in the host. The recombinant enzyme showed highest activity at pH 3.4, which is the lowest optimum pH ever reported for a pyruvoyl dependent arginine decarboxylase. The proton-consuming decarboxylation raises intracellular pH, and thereby plays a role in acid-resistance. It could inhibit the pro-inflammatory nitric oxide synthase resulting in asymptomatic infection. A variant protein Thr⁵²Ser at the predicted cleavage site showed less pro-enzyme cleavage and activity compared to the wild-type. The homologs of arginine decarboxylase and flanking arginine-agmatine antiporter were also found in different biovariants of Chlamydia trachomatis. In the invasive L2 strain of C. trachomatis, the presence of a nonsense codon in the gene encoding arginine decarboxylase enzyme prevented the expression of an active enzyme. The variant protein with tryptophan replacing nonsense codon restored arginine decarboxylase activity. The non-invasive D strain of C. trachomatis had an intact arginine decarboxylase gene, but it was recombinantly expressed as a proenzyme that was uncleaved. The arginine-agmatine antiporters from both the strains were active and transported tritiated arginine into their cells. The polyamine pathway of the crenarchaeon Sulfolobus solfataricus uses arginine to make putrescine, but the organism lacks homologs of arginine decarboxylase. However, it has two paralogs of pyruvoyl dependent S-adenosylmethionine decarboxylase − SSO0536 and SSO0585. These enzymes were recombinantly expressed as pro-enzymes that self-cleaved into [beta] and [alpha] subunits. Even with a 47% amino acid sequence identity, the SSO0536 protein exhibited significant arginine decarboxylase activity whereas SSO0585 protein had significant S-adenosylmethionine decarboxylase activity. This is the first report of an S-adenosylmethionine decarboxylase enzyme showing alternative decarboxylase activity. The chimeric protein with the [alpha]-subunit of SSO0585 and [beta]-subunit of SSO0536 had arginine decarboxylase activity, suggesting that the residues responsible for substrate recognition are located in the amino terminus. / text
10

Transcription In Mycobacteria : From Initiation To Elongation

China, Arnab 03 1900 (has links) (PDF)
The global re-emergence of TB and other mycobacterial infections have underscored the need for a thorough investigation of the biology of the causative agent, Mycobacterium tuberculosis, at the molecular level. The peculiar features of the bacterium such as slow growth rate, dormancy, unique cell wall composition and resistance towards phagocytosis by macrophages demands a detailed understanding of different essential molecular processes including transcription in this genus. Sequencing of several mycobacterial genomes provided an impetus for understanding the gene function and regulation of this formidable pathogen. Transcriptional regulation is one of the major mechanisms controlling gene expression. While a number of transcription units, promoters, sigma factors, and gene functions were identified and characterized, key features of transcription process are yet to be understood. The current study aims to understand some of the facets of transcription initiation and elongation in mycobacteria. The thesis is divided into five chapters. Chapter 1 introduces the bacterial transcription process. It starts with the description of the central molecule in transcription -the RNA polymerase (RNAP) and its catalytic mechanism. In the next section, each step of the transcription initiation, elongation and termination has been discussed. The mechanistic details as well as the different cellular factors involved in the regulation of the transcription have been discussed. The final part gives an overview of the transcription machinery of the mycobacteria, describing the promoter specificity and regulation of different sigma factors and other transcription factors known till date in mycobacteria. The scope and the objectives of the thesis are presented at the end of this chapter. In Chapter 2, a method of purification of RNAP from mycobacteria for optimized promoter -polymerase interactions is described. In vitro transcription analysis is important to understand the mechanism of transcription. Various assays for the analysis of initiation, elongation and termination form the basis for better understanding of the process. Purified RNAP with high specific activity is necessary to carry out a variety of these specific reactions. The RNAP purified from Mycobacterium smegmatis from exponential phase showed low σA-promoter specificity in promoter -polymerase interaction studies. This is due to the presence of a large number of sigma factors during exponential phase and under-representation of σA required for house - keeping transcription. In vivo reconstitution of RNAP holoenzyme with σA and its purification procedure which resulted in a holoenzyme with stoichiometric σA content is described in this chapter. The reconstituted holoenzyme showed enhanced promoter -specific binding and transcription activity compared to the enzyme isolated using standard procedure. Chapter 3 is aimed at the comparison of promoter - specific events during transcription initiation in mycobacteria. DNA -protein interactions that occur during transcription initiation play an important role in regulating gene expression. To initiate transcription, RNAP binds to promoters in a sequence -specific fashion. This is followed by a series of steps governed by the equilibrium binding and kinetic rate constants, which in turn determine the overall efficiency of the transcription process. The first detailed kinetic analysis of promoter - RNAP interactions during transcription initiation in the σA-dependent promoters PrrnAPCL1, PrrnB and Pgyr of M. smegmatis are presented in this chapter. The promoters show comparable equilibrium binding affinity but differ significantly in open complex formation, kinetics of isomerization and promoter clearance. Furthermore, the two rrn promoters exhibit varied kinetic properties during transcription initiation and appear to be subjected to different modes of regulation. In addition to the distinct kinetic patterns, each one of the house -keeping promoters studied has its own rate-limiting step in the initiation pathway, indicating the differences in their regulation. Moving the focus of the thesis from transcription initiation to elongation, a transcript cleavage factor of M. tuberculosis has been characterized in Chapter 4. After initiation of transcription, a number of proteins participate during elongation and termination by modifying the properties of the RNAP. Gre proteins are one such class of transcription elongation factors which are conserved across bacteria. They regulate transcription by binding near the secondary channel of RNAP, projecting their N-terminal coiled-coil domain into the active center and stimulating hydrolysis of the newly synthesized RNA by RNAP in the backtracked elongation complexes. Rv1080c is a putative gre factor homolog (MtbGre) present in M. tuberculosis.The protein enhanced the efficiency of promoter clearance by lowering the abortive transcription and also rescued the arrested and paused elongation complexes efficiently in the GC rich mycobacterial template. The Gre factor of M. smegmatis encoded by the gene MSMEG_5263 also showed biochemical properties similar to the M. tuberculosis protein. Although the mycobacterial Gre is similar in domain organization and shared the key residues for catalysis and RNAP interaction with Escherichia coli Gre proteins, it could not complement the E. coli strain deficient in Gre factors. Moreover, MtbGre failed to rescue E. coli RNAP stalled elongation complexes, indicating the importance of specific protein - protein interactions for transcript cleavage. Decrease in the level of MtbGre also reduced the bacterial survival by several fold indicating its essential role in mycobacteria and suggesting that a single Gre copes up with the burden of transcription fidelity of the genome. Chapter 5 describes the studies carried out to identify Gre factor homologs in mycobacteria and deciphering their function during transcription. Gre factors are members of a growing family of proteins which regulate RNAP through secondary channel. Apart from the Gre factor, putative members of this class of proteins are identified in both M. smegmatis and M. tuberculosis.The closest homologue of the canonical Gre factor of M. tuberculosis in its genome is Rv3788. The protein has Gre factor like domain organization and possess the key acidic residues required for transcript cleavage activity and the putative hydrophobic RNAP interacting residues in the C-terminus similar to MtbGre. Despite having these common features, Rv3788 did not stimulate transcript cleavage. In contrast, it turns out to be a transcription inhibitor by preventing the binding of NTPs to the enzyme. The transcription inhibition is not promoter specific, and is mediated by its binding to RNAP through the secondary channel with its N-terminus coiled coil domain. Like M. tuberculosis, the fast growing non-pathogenic mycobacteria M. smegmatis also has an ORF (MSMEG_6292) which is homologous to its canonical Gre factor and it interacts with RNAP in a similar manner. However, this protein did not exert any transcript cleavage or inhibitory activities but could compete with the Gre factor for binding to RNAP. The Gre factor homologs in mycobacteria may be involved in regulation by inhibiting transcription or by blocking the RNAP secondary channel from other RNAP active site modulators.

Page generated in 0.0428 seconds