• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New data on hemihedrite from Arizona

Lafuente, B., Downs, R. T., Origlieri, M. J., Domanik, K. J., Gibbs, R. B., Rumsey, M. S. 01 August 2017 (has links)
Hemihedrite from the Florence Lead-Silver mine in Pinal County, Arizona, USA was first described and assigned the ideal chemical formula Pb10Zn(CrO4)(6)(SiO4)(2)F-2, based upon a variety of chemical and crystal-structure analyses. The primary methods used to determine the fluorine content for hemihedrite were colorimetry, which resulted in values of F that were too high and inconsistent with the structural data, and infrared (IR) spectroscopic analysis that failed to detect OH or H2O. Our reinvestigation using electron microprobe analysis of the type material, and additional samples from the type locality, the Rat Tail claim, Arizona, and Nevada, reveals the absence of fluorine, while the presence of OH is confirmed by Raman spectroscopy. These findings suggest that the colorimetric determination of fluorine in the original description of hemihedrite probably misidentified F due to the interferences from PO4 and SO4, both found in our chemical analyses. As a consequence of these results, the study presented here proposes a redefinition of the chemical composition of hemihedrite to the ideal chemical formula Pb10Zn(CrO4)(6)(SiO4)(2)(OH)(2). Hemihedrite is isotypic with iranite with substitution of Zn for Cu, and raygrantite with substitution of Cr for S. Structural data from a sample from the Rat Tail claim, Arizona, indicate that hemihedrite is triclinic in space group P (1) over bar, a = 9.4891(7), b = 11.4242(8), c = 10.8155(7) angstrom, alpha = 120.368(2)degrees, ss = 92.017(3)degrees, gamma = 55.857(2)degrees, V = 784.88(9) angstrom(3), Z = 1, consistent with previous investigations. The structure was refined from single-crystal X-ray diffraction data to R-1 = 0.022 for 5705 unique observed reflections, and the ideal chemical formula Pb10Zn(CrO4)(6)(SiO4)(2)(OH)(2) was assumed during the refinement. Electron microprobe analyses of this sample yielded the empirical chemical formula Pb-10.05(Zn0.91Mg0.02)(Sigma) (= 0.93) (Cr5.98S0.01P0.01)(Sigma = 6.00) Si1.97O34 H-2.16 based on 34 O atoms and six (Cr + S + P) per unit cell.
2

Structural studies of organic crystals of pharmaceutical relevance : correlation of crystal structure analysis with recognised non-bonded structural motifs in the organic solid state

Essandoh, Ernest January 2009 (has links)
Pharmaceutical solids tend to exist in different physical forms termed as polymorphs. Issues about pharmaceutical systems are mainly concerned with the active ingredient's physico-chemical stability and bioavailability. The main aim of this study is to investigate the non-bonded interactions in pharmaceutical solids that govern the physical pharmaceutics performance of such materials and through the use of structural techniques and correlation of these results with crystal structural database to establish the presence of physical motifs in selected systems. Structural motifs were identified by the use of single crystal and crystal packing analysis on diverse range of pharma-relevant materials including chalcones, cryptolepines, biguanides and xanthines. These selected systems were validated using functional group and molecular analysis and correlating them to the Cambridge Structural Database. Crystallization studies are done on these selected systems as well as exploiting those using synthetic analogues. A total of 51 crystal structures were investigated including 16 new structure determinations. Addition synthesis of new xanthines to investigate novel intermolecular patterns was also undertaken. The understanding and exploitation of intermolecular interactions involving hydrogen bonds and coordination complexation during packing can be used in the design and synthesis of solid state molecular structures with desired physical and chemical properties.
3

Photochemical and Photophysical Studies of Synthetic Derivatives of the Green Fluorescent Protein Chromophore

Dong, Jian 07 July 2008 (has links)
We have synthesized dimethyl derivatives of the GFP chromophore (p-HOBDI) and several of its derivatives, and their photochemistry and photophysics were investigated using various steady-state and time-resolved techniques as follows. We first consider the effect of the £]-barrel on the optical properties of the GFP chromophore (p-HOBDI) experimentally by selective variation of the protonation state of chromophores and different solvents. Each of these forms shows a complex solvatochromic behavior and is governed by both polar and acid/base properties of the solvents. In contrast to their solution behavior, some O-alkyl GFP chromophore (alkoxy-BDI) derivatives exhibit large fluorescent enhancement in the solid state. The color of the crystalline BDI is tuned by substituent-mediated crystal packing, showing the potential applications in optoelectronic devices. Using femtosecond polarization-sensitive infrared (IR) spectrosceopy of the C=O stretching mode of the HOBDI, we have then discovered a near complete twisting around the ethylenic bridge between the phenolate and imidazolidinone groups upon electronic excitation. Cis/trans isomerization induced by the rotation around the bridge is thought to be responsible for the behavior of blinking in fluorescent protein; however, the mechanism of the thermal reverse isomerization is more problematic. Thus we synthesized BDI derivatives with decreasing para-donating ability, HO, CH3O, CH3, H, and Cl, and used a Hammett plot for the rate study. With a positive â value, we conceived, for the first time, a novel nucleophilic addition/elimination mechanism. Finally, the GFP chromophore falls into the general category of hydroxyarene photoacids, which exhibit high excited-state acidities but neutral ground states. A hydroxyl substituent at the meta position shows enhanced charge transfer and greater acidity in the excited state. As a result, we have demonstrated that the fast quenching of the excited state by internal conversion to the ground state is much slower in meta- than in para-HOBDI derivatives. This allows studies of this ultrafast intermolecular ESPT that competes with isomerization. The photoinduced dynamics of the meta isomer of GFP chromophore was further investigated using femtosecond transient absorption and fluorescence upconversion spectroscopies.
4

Structural studies of organic crystals of pharmaceutical relevance. Correlation of crystal structure analysis with recognised non-bonded structural motifs in the organic solid state

Essandoh, Ernest January 2009 (has links)
Pharmaceutical solids tend to exist in different physical forms termed as polymorphs. Issues about pharmaceutical systems are mainly concerned with the active ingredient's physico-chemical stability and bioavailability. The main aim of this study is to investigate the non-bonded interactions in pharmaceutical solids that govern the physical pharmaceutics performance of such materials and through the use of structural techniques and correlation of these results with crystal structural database to establish the presence of physical motifs in selected systems. Structural motifs were identified by the use of single crystal and crystal packing analysis on diverse range of pharma-relevant materials including chalcones, cryptolepines, biguanides and xanthines. These selected systems were validated using functional group and molecular analysis and correlating them to the Cambridge Structural Database. Crystallization studies are done on these selected systems as well as exploiting those using synthetic analogues. A total of 51 crystal structures were investigated including 16 new structure determinations. Addition synthesis of new xanthines to investigate novel intermolecular patterns was also undertaken. The understanding and exploitation of intermolecular interactions involving hydrogen bonds and coordination complexation during packing can be used in the design and synthesis of solid state molecular structures with desired physical and chemical properties.
5

Síntese e cristaloquímica do 1-(4-carboxifenil)-3-(4-acetilamidofenil)triazeno e complexos de cobre(i), prata(I) e ouro(I) com o ligante 1-(4-nitrofenil)-3-(4-etoxicarboxifenil)triazenido / Synthesis and crystalchemistry of 1-(4-carboxyphenyl)-3-(4-acetylamidophenyl)triazene and complexes of copper(I), silver(i) and gold(I) with 1-(4-ethoxycarbonylphenyl)-3-(4-nitrophenyl)triazenide ligand

Amaral, Carlos Henrique Oliveira do 05 December 2007 (has links)
This work deals with the determination of the single crystal structure analysis of four triazenido complexes including gold(I), copper(I), silver(I), and the crystal structure of a free triazene molecule. Crystal data and refinement indices of 1-(4-carboxyphenyl)-3-(4- acetylamidophenyl)triazene (1) are: monoclinic system, space group P21/n, cell parameters a = 7.772(1), b = 9.7365(2), c = 19.55(3) Å, β = 93.435(1)º, Z = 4, R1 = 0.0394, wR2 = 0.0632. The crystal structure show that the molecule deviates significantly from planarity (r.m.s. 0.342 Å). The molecules of (1) are associated to a bi-dimensional supramolecular array in form of helix chains including classic hydrogen bonding in the [010] crystallographic direction. Crystal data and refinement indices of 1-(4-ethoxycarbonylphenyl)-3-(4-nitrophenyl)triazenide(triphenylphosfine)gold(I) (3) are: triclinic system, space group P(-1), cell parameters a = 9.8837(2), b = 12.6159(2), c = 13.0948(2) Å, α = 79,160(1)°, β = 78,411(1)°, γ = 73,731(1)°, Z = 2, R1 = 0.0271, wR2 = 0.0588. One deprotonated triazenido ligand and one triphenylphosfine molecule built the linear coordination geometry of gold(I). Crystal data and refinement indices of 1-(4-ethoxycarbonylphenyl)-3-(4-nitrophenyl)-bis-(triphenylphosfine)copper(I) (4) are: triclinic system, space group P(-1), cell parameters a = 10.9853(2), b = 14.6006(3), c = 16.0638(3) Å, α = 79.160(1)°, β = 78.411(1)°, γ = 73.731(1)°, Z = 2, R1 = 0.0370, wR2 = 0.0996. One deprotonated triazenido ligand and three neutral triphenylfosfine molecules complete the distorted tetrahedral coordination sphere of copper(I). Crystal data and refinement indices of trans-bis-1-(4-ethoxycarbonylphenyl)-3-(4-nitrophenyl)triazenide-bis-(pyridine)silver(I) (5) are: triclinic system, space group P(-1) with cell parameters a = 9.3123(4), b = 11.1234(5), c = 11.1914(5) Å, α = 71.165(3)°, β = 68.723(3)°, γ= 89.530(3)°, Z = 2, R1 = 0.0383 wR2 = 0.0856. Two deprotonated monodentate triazenido ligands and two pyridine molecules in trans position relative to each other in a eight-membered Ag2N6 fragment, perform the Tcoordination geometry of each silver(I) ion. Crystal data and refinement indices of Catena-[bis(μ2-ciano)-bis(triphenilphosfine)-di-silver(I)] (6) are: monoclinic system, space group P21/n with cell parameters a = 9.3174(4), b = 22.931(1), c = 16.1513(8) Å, β = 99.759(3)°, Z = 4, R1 = 0.0526, wR2 = 0.1337. Two neutral triphenilfosfine molecules and two cyanide ligands support the distorted tetrahedral coordination geometry of the silver(I) ion in a open catenated coordination polymer. / Este trabalho apresenta a determinação da estrutura cristalina e molecular de quatro complexos sendo um com ouro(I), outro com cobre(I) e dois complexos de prata(I), adicionalmente incluindo a estrutura cristalina e molecular de um composto triazeno livre O composto 1-(4-carboxifenil)-3-(4-acetilamidofenil)triazeno(1) cristaliza no sistema monoclínico, grupo espacial P21/n, com parâmetros de cela a = 7,7723(10) Å, b = 9,7365(2) Å, c = 19,355(3) Å, β = 93,4350(10)º, V = 1462,09(4) Å3, Z = 4, R1 = 0,0394, wR2 = 0,1093. A estrutura cristalina do pró-ligante (1) revela que a molécula não é planar (r.s.m. 0,3148Å) e que, as moléculas unem-se por ligações de hidrogênio na direção cristalográfica [010]. As ligações de hidrogênio são do tipo clássicas N H O, O H O e O H N, que se relacionam por operações de simetria formando um arranjo bidimensional. O composto (3) cristaliza do sistema triclínico, grupo espacial P(-1) com parâmetros de cela a = 9,8837(2) Å, b = 12,6159(2) Å, c = 13,0948(2) Å; α= 79,1600(10)°, β= 78,4110(10)°, γ = 73,7310(10)°; V = 1520,32(5) Å3 ; Z = 2. O refinamento desta estrutura conduziu aos índices de discordância R1 = 0,0271, wR2 = 0,0588. A esfera de coordenação do íon ouro(I) é formada por um ligante triazeno desprotonado e uma moléculas de trifenilfosfina. O composto (4) cristaliza no sistema triclínico, grupo espacial P(-1) com parâmetros de cela a = 10,9853(2) Å, b = 14,6006(3) Å , c = 16,0638(3) Å, α = 97,1150(10)°, β = 102,9530(10)°, γ = 110,8030(10)°; V = 2287,95(8) Å3 ; Z = 2. O refinamento desta estrutura conduziu aos índices de discordância R1 = 0,0370, wR2 = 0,0996. A esfera de coordenação do íon cobre(I) é formada por um ligante triazeno desprotonado e duas moléculas de trifenilfosfina. O composto (5) binuclear cristaliza no sistema triclínico, grupo espacial P (-1) com parâmetros de cela a = 9,3123(4) Å, b = 11,1234(5) Å, c = 11,1914(5) Å, α = 71,165(3)°, β = 68,723(3)°, γ = 89,530(3)°; V = 1014,56(8) Å3 ; Z = 2. O refinamento desta estrutura demonstrou os índices de discordância R1 = 0,0383, wR2 = 0,0856. A esfera de coordenação do íon prata(I) é formada por dois ligantes triazenos desprotonados e duas moléculas de piridina. O composto (6) polímero cristaliza no sistema monoclínico, grupo espacial P21/n com parâmetros de cela a = 9,3174(4) Å, b = 22,9314(14) Å, c = 16,1513(8) Å, β = 99,759 (3)°; V = 3401,0(3) Å3 ; Z = 4. O refinamento desta estrutura atingiu os índices de discordância R1 = 0,0526, wR2 = 0,1337. A esfera de coordenação do íon prata(I) é formada por dois ligantes trifenilfosfina e dois cianetos.

Page generated in 0.0775 seconds