• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 68
  • 27
  • 11
  • 10
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 290
  • 101
  • 76
  • 48
  • 41
  • 30
  • 26
  • 25
  • 24
  • 23
  • 22
  • 20
  • 19
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Structures bifeuilletées en codimension 1 / Codimension 1 bifoliated structures

Thom, Olivier 01 December 2017 (has links)
Cette thèse a pour objet l'étude des paires de feuilletages complexes. Plus précisément, on s'intéressera aux paires de feuilletages complexes de codimension 1 dans deux situations différentes : d'un côté il s'agira de germes de feuilletages au voisinage de l'origine de C (la situation "locale"), de l'autre il sera question de feuilletages définis dans un voisinage de dimension 2 d'une courbe complexe (la situation "semi-globale"). Le problème semi-global a pour but la compréhension des voisinages de courbes dans des surfaces complexes ; on obtiendra ainsi des résultats de classification des voisinages particuliers que sont les voisinages munis de deux feuilletages. Pour obtenir cette classification, on aura d'abord besoin d'étudier les paires de feuilletages d'un point de vue local. On présentera ainsi certains résultats à propos de la classification des paires de germes de feuilletages au voisinage d'un point dans C2. Certains des résultats locaux donnent par généralisation des résultats de classification de paires de germes de fonctions en toute dimension ; on présentera plus particulièrement une étude détaillée des paires de germes de fonctions de Morse en toute dimension. / This thesis has for goal the study of pairs of complex foliations. More precisely, we will discuss pairs of codimension 1 complex foliations in two different situations: on one side we will have germs of foliations in the neighborhood of the origin of C (the "local" situation), on the other side the foliations will be defined on a dimension 2 neighborhood of a complex curve (the "semi-global" situation). The semi-global problem has for goal the understanding of neighborhoods of curves in complex surfaces; we will thus obtain classification results for the particular neighborhoods that are equipped with two foliations. In order to obtain this classification, we will first need to study pairs of foliations from a local point of view. Hence, we will present some results about classification of pairs of germs of foliations in a neighborhood of a point in C2. Some of the local results give by generalisation classification results for pairs of germs of functions in any dimension; in particular, we will present a detailed study of pairs of germs of Morse functions in any dimension.
52

Singularidades de feixes instanton sobre P^3 / Singularities of instanton sheaf on P^3

Gonzales Gargate, Michael Santos, 1984- 24 August 2018 (has links)
Orientador: Marcos Benevenuto Jardim / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-24T09:35:57Z (GMT). No. of bitstreams: 1 GonzalesGargate_MichaelSantos_D.pdf: 3866863 bytes, checksum: 1c42833ca2903ade2f3da9409a389b93 (MD5) Previous issue date: 2014 / Resumo: Nesta tese estudamos o conjunto singular de feixes instanton sobre o espaco projetivo P^3. Um dos resultados principais mostra que o conjunto singular de um feixe instanton não localmente livre de posto 2 tem dimensão pura 1, e que o duplo dual E** e um feixe instanton localmente livre (Teorema 3.1.5). Ambos enunciados são falsos quando o posto de E e maior que 2. Também consideramos os feixes S_E = Ext^1(E;O_P^3) e Q_E = E**/E. Se E e feixe instanton não localmente livre de posto 2 em P3, mostramos que S_E e Q_E sâo feixes instanton de posto 0, conforme de nicão introduzida por Hauzer e Langer em [10]. Alem disso, mostramos que S_E e Q_E são suportados no conjunto singular Sing(E) e possuem o mesmo polinômio de Hilbert (Seções 3.1.2 e 3.1.3). Finalmente, apresentamos algumas propriedades do conjunto singular. Garantimos que o conjunto singular esta contido em uma curva de interseção completa de grau c^2, onde c = c_2(E) e chamada a carga de E (Proposição 3.2.1). Por outro lado, baseado na noção de transformações elementares para instantons dada por Jardim, Markushevich e Tikhomirov em [16], constuímos um exemplo de feixe instanton de posto 2 cujo conjunto conjunto singular não e conexo (Seção 3.2.3). Fornecemos tambem exemplos de feixes instantons de posto 3 cujo conjunto singular consiste de um ponto, e um ponto e uma reta / Abstract: In this thesis we study the singular locus of instanton sheaves on the projective space P^3. We prove that the singular locus Sing(E) of a non-locally free instanton sheaf E of rank 2 has pure dimension 1, and that the double dual E** is a locally free instanton sheaf (Theorem 3.1.5). Both statements are false if the rank of E is larger than 2. We also consider the sheaves S_E = Ext^1(E;OP3) and Q_E = E**/E. When E is a non-locally free instanton sheaf of rank 2, we show that S_E and Q_E are rank 0 instantons, according to a de nition of Hauzer and Langer in [10]. In addition, we show that both are supported the singular locus Sing(E) and have the same Hilbert polynomial (Sections 3.1.2 and 3.1.3). Finally, we present some properties of the singular locus. We guarantee that the singular locus is contained in a complete intersection curve of degree c_2, where c=c_2(E) is called the charge of E (Proposition 3.2.1). Moreover, based on the notion of elementary transformations for instantons given by Jardim, Markushevich and Tikhomirov in [16], we construct an example of a rank 2 instanton sheaf whose singular locus is not connected (Section 3.2.3). We also provide examples of rank 3 instanton sheaves whose singular loci are a single point, and a straight line plus a point / Doutorado / Matematica / Doutor em Matemática
53

Contribution to qualitative and constructive treatment of the heat equation with domain singularities

Chin, P.W.M. (Pius Wiysanyuy Molo) 13 February 2012 (has links)
Please read the abstract in the 00front section of this document. / Thesis (PhD)--University of Pretoria, 2011. / Mathematics and Applied Mathematics / unrestricted
54

Probing Random Media With Singular Waves

Schwartz, Chaim 01 January 2006 (has links)
In recent years a resurgence of interest in wave singularities (of which optical vortices are a prominent example), light angular momentum and the relations between them has occurred. Many applications in various areas of linear and non-linear optics have been based on studying effects related to angular momentum and optical vortices. This dissertation examines the use of such wave singularities for studying the light propagation in highly inhomogeneous media and the relationship to angular momentum transfer. Angular momentum carried by light can be, in many cases, divided in two terms. The first one relates to the polarization of light and can be associated, in the quantum description, to the spin of a photon. The second is determined by the electromagnetic field distribution and, in analogy to atomic physics, is associated with the orbital angular momentum (OAM) of a photon. Under the paraxial approximation appropriate for the case of beam propagation, the two terms do not couple. However, each of them can be modified by the interaction with different media in which the light propagates through processes which involve angular momentum exchange. The decoupling of spin and orbital parts of light angular momentum can not, in general, be assumed for non paraxial propagation in turbid media, especially when backscattering is concerned. In Chapter 3 of this dissertation, scattering effects on angular momentum of light are discussed both for the single and multiple scattering processes. It is demonstrated for the first time that scattering from a spherically symmetric scattering potential, couples the spin and the OAM such that the total angular momentum flux density in conserved in every direction. Remarkably, the conservation of angular momentum occurs also for some classes of multiple scattering trajectories and this phenomenon manifests itself in ubiquitous polarization patterns observed in back-scattering from turbid media. It is newly shown in this dissertation that the polarization patterns a result of OAM carrying optical vortices which have a geometrical origin. These geometrical phase vortices are analyzed using the helicity space approach for optical geometrical phase (Berry phase). This approach, introduced in the con- text of random media, elucidates several aspects specific to propagation in helicity preserving and non-preserving scattering trajectories. Another aspect of singular waves interaction with turbid media relates to singularities embedded in the incident waves. Chapter 4 of the dissertation discusses how the phase distribution associated with an optical vortex leads to changes in the spatial correlations of the electromagnetic field. This change can be used to control the properties of the effect of enhanced backscattering in a way which allows inferring the optical properties of the medium. A detailed theoretical and experimental study of this effect is presented here for the first time for both double-pass geometries and diffusive media. It is also demonstrated that this novel experimental technique can be used to determine the optical properties of turbid media and, moreover, it permits to sense the depth of reflective inclusions in opaque media. When considering a regime of weakly inhomogeneous media, the paraxial approximation is still valid and therefore the spin and OAM do not couple. If, In addition, the medium is optically isotropic then the polarization is not affected. However, when the medium is non-axially symmetric for any specific realization, the OAM does change as a result of interaction with the medium. This effect can be studied using a newly developed method of coherent modes coupling which is presented in Chapter 5. This approach allows studying the power spread across propagating modes which carry different orbital angular momentum. The powerful concept of coherent modes coupling can be applied to fully coherent, fully polarized sources as well to partially coherent, partially polarized ones. An example of this scattering regime is atmospheric turbulence and the propagation through turbulence is thoroughly examined in Chapter 5. The results included in this dissertation are of fundamental relevance for a variety of applications which involves probing different types of random media. Such applications include remote sensing in atmospheric and maritime environments, optical techniques for biomedical diagnostics, optical characterization procedures in material sciences and others.
55

The Flourescence of Rare Earth Ions in Alkali Halides

Buchanan, Margaret Ann 10 1900 (has links)
High resolution fluorescence spectra are presented of the sideband of the 5D0+ 7F0 transition of Sm++ in KBr and KCl. Several Van Hove singularities of the phonon spectrum of the host material are directly observed. They occur at slightly different frequenciesfromthose predicted by density of states calculations based on neutron diffraction measurements. Numerical calculations of both sidebands are given and compared with experiment, with quite good agreement. Sidebands observed for Eu++ in KBr and KCl are also presented and discussed. / Thesis / Doctor of Philosophy (PhD)
56

Some singularity theorems in Lorentzian geometry

Tellier, Raymond. January 1983 (has links)
No description available.
57

Singularities of bihamiltonian systems and the multidimensional rigid body

Izosimov, Anton January 2012 (has links)
Two Poisson brackets are called compatible if any linear combination of these brackets is a Poisson bracket again. The set of non-zero linear combinations of two compatible Poisson brackets is called a Poisson pencil. A system is called bihamiltonian (with respect to a given pencil) if it is hamiltonian with respect to any bracket of the pencil. The property of being bihamiltonian is closely related to integrability. On the one hand, many integrable systems known from physics and geometry possess a bihamiltonian structure. On the other hand, if we have a bihamiltonian system, then the Casimir functions of the brackets of the pencil are commuting integrals of the system. We consider the situation when these integrals are enough for complete integrability. As it was shown by Bolsinov and Oshemkov, many properties of the system in this case can be deduced from the properties of the Poisson pencil itself, without explicit analysis of the integrals. Developing these ideas, we introduce a notion of linearization of a Poisson pencil. In terms of linearization, we give a criterion for non-degeneracy of a singular point and describe its type. These results are applied to solve the stability problem for a free multidimensional rigid body.
58

QUASI-TOROIDAL VARIETIES AND RATIONAL LOG STRUCTURES IN CHARACTERISTIC 0

Andres E Figuerola (6693590) 13 August 2019 (has links)
We study log varieties, over a field of characteristic zero, which are generically logarithmically smooth and fs in the Kummer normally log étale topology. As an application, we prove an analog of Abramovich-Temkin-Wlodarczyk’s log resolution of singularities of fs log schemes in the Kummer fs setting.<br>
59

Singularidades no infinito de funções polinomiais / Singularities at infinity of polynomial functions

Ribeiro, Nilva Rodrigues 22 October 2012 (has links)
O principal objetivo desta tese é classificar as singularidades no infinito de polinômios em \'C POT. n\'. Aplicamos inicialmente o método utilizado por Siersma e Smeltink em [38], para classificar polinômios de grau 3 em \'C POT. 3\'. Este método consiste em classificar polinômios fixando uma forma normal para a parte homogênea de maior grau. As singularidades no infinito de funções polinomiais podem ser estudadas através das singularidades das homogenizações destas aplicações definidas no espaço projetivo. Este é o método utilizado por Bruce e Wall em [11], que fazem uma classificação das superfícies cúbicas no espaço projetivo \'P POT. 3\', relacionando as singularidades destas superfícies com a classificação de certos sistemas polinomiais a elas associados. Um dos objetivos do nosso trabalho é estender parcialmente o método de Bruce e Wall para classificar as singularidades no infinito de polinomios f = \"f IND. d\'1 +\'f IND. d\' em \'C POT. n\', com d 3, através do estudo das singularidades do sistema polinomial g = (\'f IND. d\' 1, \'f IND. d\'). Para polinômios de grau 3 em \'C POT. 3\', fazemos um refinamento das formas normais de [11], que possibilita uma descrição mais detalhada da fibra especial e o estudo no infinito da topologia da fibra genérica. Isto é feito com o auxílio do invariante \' IND. n1\' (f) definido por Siersma e Tibar em [39], e por eles denominado defeito maximal de Betti / The main purpose of this thesis is to classify singularities at infinity of polynomial functions f : \'C POT. n\' C. We first apply Siersma and Smeltinks method [38] to classify degree 3 polynomials in \'C POT. 3\'. This method consists on classifying polynomials fixing the normal form of their highest homogeneous part. The singularities at infinity of polynomial functions may also be studied through the classification of singularities of the projective hypersurfaces F = 0, where F is the homogenization of f. This was the method applied by Bruce and Wall in [11], in their classification of the cubic surfaces in \'P POT. 3\'. They relate the singularities of the cubic surfaces with the singularities of certain systems of polynomials. In our work, we partially extend Bruce and Walls method to classify the singularities at infinity of polynomials f = \'f IND. d1\' + \'f IND. d\' in \'C POT. 3\', n 3, based on the investigation of singularities of the polynomial system g = (\'f IND. d1\', \'f IND. d\'). For the class of degree 3 polynomials in \'C POT. 3\', we refine Bruce-Walls classification, in order to present a more detailed description of the special fiber of f and to investigate its topology with the help of the invariant Betti maximal defect, introduced by Siersma and Tibar in [39]
60

Variedades determinantais e singularidades de matrizes / Determinantal varieties and singularities of matrices

Pereira, Miriam da Silva 29 April 2010 (has links)
O teorema de Hilbert-Burch fornece uma boa descrição de variedades determinantais de codi- mensão dois e de suas deformações em termos da matriz de representação. Neste trabalho, usamos esta correspondência para estudar propriedades de tais variedades usando métodos da teoria de singularidades. Na primeira parte da tese, estabelecemos a teoria de singularidades de matrizes n X p, generalizando os resultados obtidos por J. W. Bruce and F. Tari em [5], para ma- trizes quadradas, e por A. Frühbis-Krüger em [16], para matrizes n X (n+1). Na segunda parte, nos concentramos em variedades determinantais de codimensão 2, com singularidade isolada na origem. Para estas variedades, podemos mostrar a existência e a unicidade de suavizações, o que possibilita definir seu número de Milnor como o número de Betti na dimensão média de sua fibra genérica. Para superfícies em \'C POT. 4\', obtemos uma fórmula Lê-Greuel expressando o número de Milnor da superfície em termos da segunda multiplicidade polar e do número de Milnor de uma seção genérica / The theorem of Hilbert- Burch provides a good description of codimension two determinantal varieties and their deformations in terms of their presentation matrices. In this work we use this correspondence to study properties of determinantal varieties, based on methods of singularity theory of their presentation matrices. In the first part of the thesis we establish the theory of singularities for n X p matrices extending previous results of J. W. Bruce and F. Tari in [5], for classes of square matrices, and A. Frühbis-Krüger for n X (n+1) matrices in [16]. In the second part we concentrate on codimension two determinantal varieties with isolated singularities. These singularities admit a unique smoothing, thus we can define their Milnor number as the middle Betti number of their generic fiber. For surfaces in \'C POT. 4\' , we obtain a Lê-Greuel formula expressing the Milnor number of the surface in terms of the second polar multiplicity and the Milnor number of the generic section

Page generated in 0.0605 seconds