• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 8
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 44
  • 12
  • 12
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Rôle des systèmes toxine antitoxine de Sinorhizobium meliloti au cours de l’interaction symbiotique avec Medicago sp. / Role of Sinorhizobium meliloti toxin antitoxin systems during symbiotic interaction with Medicago sp.

Lipuma, Justine 06 July 2015 (has links)
L'interaction symbiotique entre la bactérie du sol Sinorhizobium meliloti et la plante de la famille des légumineuses Medicago sp. conduit au développement d’un nouvel organe racinaire: la nodosité. Au sein de cet organe, les bactéries différenciées en bactéroïdes, réduisant l’azote atmosphérique en ammoniac directement assimilable par la plante, favorisant ainsi sa nutrition azotée. En échange, la plante, grâce à son activité photosynthétique, fournit aux bactéroïdes des composés carbonés. Cette association à bénéfice mutuel n’est toutefois pas permanente. En effet, quelques semaines seulement après l'établissement de la symbiose, une sénescence définie par une dégradation des bactéroïdes puis des cellules végétales, est observée. Cette étape du développement nodositaire est aujourd’hui encore peu étudiée et mal comprise.L’objectif premier de ce travail était donc d’analyser le rôle du bactéroïde dans cette rupture symbiotique. Pour cela, nous nous sommes plus particulièrement intéressés au rôle des systèmes Toxine Antitoxine (TA) de type VapBC de S. meliloti. En effet, ces opérons sont, dans la littérature, connus pour être impliqués dans la réponse aux stress, la persistance et/ou la mort bactérienne ainsi que la survie de la bactérie au sein de la cellule hôte. Dans un premier temps, nous avons développé une analyse globale du rôle des 11 systèmes VapBC chromosomiques de S. meliloti dans l’interaction symbiotique par des analyses in silico et de phénotypes de mutants d'invalidation du gène de la toxine en interactions avec Medicago sp. Deux études ont été réalisés de façon plus détaillées sur deux modules vapBC (VapBC5 et VapBC7). / The symbiotic interaction between the soil bacterium Sinorhizobium meliloti and the legumes plant Medicago sp. led to the development of a new root organ: the nodule. In this nodule differenciated bacteria into bacteroids, reducing atmospheric nitrogen into ammonia directly assimilated by the plant, thus promoting its nitrogen nutrition. In exchange, the plant, thanks to its photosynthetic activity, provides carbon compounds to the bacteroids. This mutual benefit association is however not permanent. Indeed, just weeks after the establishment of the symbiosis, senescence defined by a degradation of Bacteroides and plant cells, is observed. This stage of development is poorly understood in particularly about bacterial signal.The primary objective of this study was therefore to analyze the role of bacteroids in this symbiotic rupture. For this, we are particularly interested in the role of VapBC toxin antitoxin systems (TA) of S. meliloti. Indeed, in the literature, they are known to be involved in the stress response, persistence and / or bacterial death and the survival of the bacteria within the host cell. At first, we developed a global analysis of the role of 11 VapBC chromosomal systems in S. meliloti symbiotic interaction. After an in silico study, we studied the symbiotic phenotype with Medicago sp., Of each of the bacterial toxin mutants invalidation. Given the results, we, as a second step, developed a detail analysis of phenotypes obtained with two of these mutants: vapC5- and vapC7-.
22

Contrôle symbiotique de l’immunité au cours des étapes tardives de la symbiose Medicago-Sinorhizobium / Symbiotic control of plant immunity during the late step of the Medicago-Sinorhizobium symbiosis

Berrabah, Fathi 03 February 2016 (has links)
La légumineuse Medicago établie une interaction symbiotique avec des bactéries du sol fixatrices d’azote, les rhizobia. Cette interaction provoque la formation d’un nouvel organe racinaire, la nodosité, au sein de laquelle les bactéries infectent de manière massive et chronique les cellules de la plante. Malgré cette invasion, aucune réaction de défense n’est observée ce qui suggère l’existence de mécanismes symbiotiques locaux de contrôle de l’immunité. Les gènes de Medicago DNF2 et SymCRK codant une phospholipase C-like et un récepteur-like kinase riche en cystéines, semblaient intervenir dans ces mécanismes peu connus. Mon travail de thèse a consisté à mieux caractériser les mécanismes de tolérance aux rhizobia notamment ceux faisant intervenir ces deux gènes. Nos résultats indiquent que dnf2 et symCRK forment des nodosités non-fixatrices, nécrotiques, présentant une activation des défenses et une perte de viabilité des bactéroïdes (forme intracellulaire des bactéries). Par ailleurs, l’utilisation de mutants bactériens nous a permis de montrer que, chez la plante sauvage, la perte de viabilité des bactéroïdes et l’absence de fixation d’azote ne sont pas suffisantes pour stimuler les défenses. Nos résultats indiquent également que dnf2 et symCRK agissent successivement lors du processus symbiotique et que la nécessité de dnf2 pour l’établissement de la symbiose peut être contournée dans certaines conditions de culture. Enfin, nous avons réalisé une analyse du protéome de symCRK et des expériences de physiologie végétale qui ont mis en évidence la nécessité, pour le maintien d’une symbiose efficace, de réprimer la voie éthylène après internalisation des rhizobia dans les cellules végétales. Ensemble, nos données améliorent la compréhension du phénomène de tolérance observée dans les nodosités de Légumineuses. / The legume plant Medicago establishes symbiotic interaction with nitrogen fixing bacteria, called rhizobia. This interaction leads to the formation of root organs, the nodules. A massive and chronic infection of nodule cells is observed without induction of any plant defense suggesting that a symbiotic mechanism controls immunity in the nodules. The two Medicago genes, DNF2 and SymCRK encoding a phospholipase C-like protein and a cysteine-rich receptor-like kinase respectively were identified as potentially involved in the prevention of defenses during the late steps of the symbiosis. However, this phenomenon was poorly characterized. Herein we improved the characterization of the Legume tolerance to intracellular rhizobia with an emphasis on the role of DNF2 and SymCRK. Our results indicate that dnf2 and symCRK produce necrotic nodules that do not fix nitrogen, that develop defenses and in which bacteroids, the intracellular form of rhizobia, rapidly loose viability. Using bacterial mutants, we show that reduced bacteroid viability and/or nitrogen fixation defect are not per se enough to trigger defenses in wild type plants. Our results also indicate that DNF2 and SymCRK act successively during the symbiotic process and that artificial culture conditions can bypass DNF2 requirement for symbiosis. Finally, symCRK proteome analysis and physiological studies together indicate that the ethylene pathway has to be repressed after rhizobia internalization within the plant cells to maintain efficient symbiosis. Together our data improve the knowledge on the basis of legume tolerance to rhizobia.
23

Étude du rôle d’une Ribonucléase de type III, MtRTL1b, lors du développement des nodosités fixatrices d’azote chez l’espèce modèle Medicago truncatula / Role of a type III Ribonuclease, MtRTL1b, during nitrogen fixing nodule development in Medicago truncatula

Moreau, Jérémy 30 November 2018 (has links)
La majorité des Légumineuses sont capables d’établir une symbiose avec des bactéries du sol nommées Rhizobia. Lors de cette interaction symbiotique, un nouvel organe est formé, la nodosité. Dans cet organe, les bactéries fixent l’azote atmosphérique au profit de la plante hôte. Pendant la symbiose Rhizobia-Légumineuse, deux grands changements transcriptômiques ont été observés par différentes technologies, comme le RNASeq (Maunoury et al., 2010) ou les expériences de microarrays (Benedito et al., 2008). Ces grands changements interviennent aux différentes étapes de développements des nodosités et sont médiés par différents régulateurs de l’expression génique comme certains FTs clés et des petits ARN. Ces petits ARN régulateurs sont produits après le clivage de précurseurs de long ARN double brin ou d’ARN en épingle à cheveux par des enzymes particulières de la famille des ribonucléases de type III (RNase III), nommées DICER-LIKE (DCL). De plus, des gènes codant des RNases III additionnelles sont présents dans le génome de plantes et leurs rôles restent encore à être déterminés.Dans cette étude, nous avons caractérisés la famille des RNases III chez Medicago truncatula mais aussi chez d’autres espèces de légumineuse. Nous avons également recherchés l’implication de MtRTL1b, une RNase III, lors du développement des nodosités.Cette RNase III est un orthologue spécifique des nodosités d’AtRTL1, un répresseur de silencing chez Arabidopsis thaliana. Tout d'abord, nous avons montré que l’expression de ce gène est activée juste avant la différenciation et est principalement restreinte à l’interzone, là où les bactéroïdes deviennent totalement différenciés dans les cellules hôtes, et dans la zone de fixation de la nodosité. La répression de l’expression de MtRTL1b, par ARN interférence dans des racines transgéniques, affecte le développement de la nodosité, la fixation de l’azote et la viabilité des bactéroïdes. Un phénotype opposé est observé lorsque MtRTL1b est exprimé de façon ectopique dans la racine. Les analyses des données de séquençage nous ont permis de mettre en évidence que le RNAi conduit à la sous-expression de 1038 gènes, incluant plus de 109 gènes codant des NCRs qui sont des peptides intervenant dans le développement des bactéroïdes et/ou pour leur viabilité dans les nodosités indéterminées. De plus,des gènes impliqués dans les voies métaboliques et la régulation de l’état d'oxydo-réduction mais aussi dans le processus symbiotique, comme la leghémoglobine, sont également sous-exprimés. Des données de séquençage de petits ARN et d’ARN double brins sont en cours d’analyse afin de caractériser les changements dans les populations de petit ARN et identifier les substrats ARN double brin de cette RNase III lors du développement des nodosités. / Almost all Legumes are able to establish symbiosis with soil bacteria called Rhizobia. During this interaction, a new organ is formed, the nodule. In this organ, bacteria fix the atmospheric nitrogen for the host plant. During Rhizobia-Legumes symbiosis twotranscriptomic changes were observed by different technologies like RNAseq (Maunoury et al., 2010) or microarrays experiment (Benedito et al., 2008). These dramatic changes occur at the different steps of nodule development and are mediated by various gene expression regulators including several keys transcription factors and small RNAs. These small regulatory RNAs are produced after cleavage of long double-stranded or hairpin RNA precursors by particular enzymes of the ribonuclease III (RNase III) family, called DICERLIKEproteins (DCL). However, additional RNase III encoding genes are present in plant genomes, whose roles remain to be fully determined.In this work, we characterized the RNAse III family in the model M. truncatula, as well as other legumes species. We also investigated the involvement in nodule development of MtRTL1b, one RNAse III, a nodule-specific orthologue of AtRTL1, a putative silencing repressor in Arabidopsis thaliana. First, we showed that the expression of this gene is activated just before differentiation and is mainly restricted in the interzone, where bacteroid become fully differentiated into the host cells and in the nitrogen fixation zone of the nodule. Repression of MtRTL1b expression, by RNA interference in transgenic roots, affected nodule development, nitrogen fixation and bacteroid viability while an opposite phenotype was observed in roots with ectopic expression of this gene. Then, RNASeq analyses showed that the RNAileads to the down-regulation of 1038 genes, including more than 109 NCRs, encoding peptides involved in bacteroid development and/or viability in indeterminate nodules. Moreover, genes involved in metabolic pathways and redox regulations as well as other genes involved in symbiosis, like leghemoglobins, are also down-regulated. RNAseq of small RNAs and double strand RNAs are under analysis to characterize changes in sRNA populations and identify dsRNA substrates of this RNAse III during nodule development.
24

Specialized Replication Operons Control Rhizobial Plasmid Copy Number in Developing Symbiotic Cells

Perry, Clarice Lorraine 01 December 2015 (has links)
The rhizobium – legume symbiosis is a complex process that involves genetic cooperation from both bacteria and plants. Previously, our lab described naturally occurring accessory plasmids in rhizobia that inhibit this cooperation. A transposon mutagenesis was performed on the plasmids to detect the genetic factor that blocked nitrogen fixation. Several of the plasmids were found to possess a replication operon that when disrupted by transposon insertion, restored symbiotic function. This study describes an in-depth investigation into one of those plasmids, pHRC377, and into its replication operon. The operon, which we have called repA2C2, comes from the repABC family of replication and partitioning systems commonly found in alphaproteobacteria. In this study we show that this operon is not necessary for pHRC377 replication in LB culture or free living cells, but is necessary for plasmid amplification in the plant, specifically during rhizobial differentiation into nitrogen fixing bacteroids. We also show how the other repABC type operons on pHRC377 function in relation to plasmid maintenance and copy number during endoreduplication and how they do not have the same phenotypic effect as repA2C2.
25

Structural investigation of MosA

Nienaber, Kurt 29 April 2008
MosA is an enzyme from Sinorhizobium meliloti L5-30, a beneficial soil bacterium. Initial investigation into this enzyme categorized it as a methyltransferase. Further investigation revealed that this was incorrect, and that MosA is actually a dihydrodipicolinate synthase, part of the N-acetylneuraminate lyase superfamily. One of the characteristics of enzyme superfamilies is their low sequence identity, but relatively high structural similarity. The structural investigation reported here confirms the high structural similarity between MosA and other superfamily members. <p>Investigation of MosA was carried out by means of x-ray crystallography. It was believed that detailed structural information may shed light into not only the enzymatic mechanism, but also the inhibition of MosA by lysine, the final product of the enzymatic pathway. Insight into enzyme mechanism and inhibition may ultimately prove useful in herbicide or insecticide development, as other dihydrodipicolinate synthases from harmful fungi, bacteria, or plants, make attractive targets for inhibition. Lysine is an essential amino acid for humans, meaning that there is no endogenous lysine production to block the use of these hypothetical inhibitors. Specific inhibitors based on crystal structures have proven to be effective in the past and hopefully, will continue to be useful in the future. <p>Here we report the structure of MosA, solved to 1.95 Å resolution with lysine 161 forming a Schiff-base adduct with pyruvate. This adduct is consistent with the currently accepted dihydrodipicolinate synthase enzyme mechanism.
26

Structural investigation of MosA

Nienaber, Kurt 29 April 2008 (has links)
MosA is an enzyme from Sinorhizobium meliloti L5-30, a beneficial soil bacterium. Initial investigation into this enzyme categorized it as a methyltransferase. Further investigation revealed that this was incorrect, and that MosA is actually a dihydrodipicolinate synthase, part of the N-acetylneuraminate lyase superfamily. One of the characteristics of enzyme superfamilies is their low sequence identity, but relatively high structural similarity. The structural investigation reported here confirms the high structural similarity between MosA and other superfamily members. <p>Investigation of MosA was carried out by means of x-ray crystallography. It was believed that detailed structural information may shed light into not only the enzymatic mechanism, but also the inhibition of MosA by lysine, the final product of the enzymatic pathway. Insight into enzyme mechanism and inhibition may ultimately prove useful in herbicide or insecticide development, as other dihydrodipicolinate synthases from harmful fungi, bacteria, or plants, make attractive targets for inhibition. Lysine is an essential amino acid for humans, meaning that there is no endogenous lysine production to block the use of these hypothetical inhibitors. Specific inhibitors based on crystal structures have proven to be effective in the past and hopefully, will continue to be useful in the future. <p>Here we report the structure of MosA, solved to 1.95 Å resolution with lysine 161 forming a Schiff-base adduct with pyruvate. This adduct is consistent with the currently accepted dihydrodipicolinate synthase enzyme mechanism.
27

In vivo dynamics of the quorum sensing-related interplay during symbiotic interaction between the nitrogen fixing bacterium, Sinorhizobium meliloti, and its eukaryotic host, Medicago truncatula

Shakhatreh, Muhamad Ali Khalil 09 February 2012 (has links)
No description available.
28

Expression Analysis of the Transporters of Sinorhizobium Meliloti

Sartor, Andrea L. 12 1900 (has links)
<p> Sinorhizobium meliloti is an alpha-proteobacterium that forms symbiotic nodules on the roots of Medicago sativa (alfalfa). The ability to catabolize specific compounds available in the soil is one of the best-characterized factors to increase competition for nodulation. In order to successfully attain symbiosis S. meliloti must compete for nutrients in the rhizosphere, which can be done by having a large number of transport systems encoded in its genome. Genes encoding proteins involved in transport constitute the largest (12%) class of genes in the S. meliloti genome. Great interest now lies in determining substrates for the transport systems and their role in the survival and fitness of S. meliloti.</p> <p> An estimated 824 transport genes in the genome of the soil bacterium Sinorhizobium meliloti are predicted to encode 382 transport systems. All of the S. meliloti transporters had been studied under 120 different conditions, including growth on various carbon and nitrogen sources, seed and root exudates and starvation conditions.</p> <p> From this screen of every transport system in S. meliloti, the substrates that induce expression of over 50 transport systems have been identified. We have found putative transporters for amino acids, sugars, sugar alcohols, amino sugars, betaines and other compounds that might be found in the soil. This large scale expression analysis gives insight into the natural environment of S. meliloti by studying those genes that are induced by compounds that would be found in the soil.</p> / Thesis / Master of Science (MSc)
29

The Roles of the Malic Enzymes of Rhizobium (Sinorhizobium) Meliloti in Symbiotic Nitrogen Fixation / Roles of Malic Enzymes of R. Meliloti in Symbiosis

Cowie, Alison 09 1900 (has links)
The genome of 𝘙. 𝘮𝘦𝘭𝘪𝘭𝘰𝘵𝘪 contains two genes for malic enzymes. One uses NAD⁺ as a cofactor (𝘥𝘮𝘦) and one utilizes NADP⁺ (𝘵𝘮𝘦). The two enzymes have been purified and the genes cloned and sequenced. Loss of TME enzyme function gives no detectable phenotype in either 𝘙. 𝘮𝘦𝘭𝘪𝘭𝘰𝘵𝘪 grown in culture or in bacteroids. Loss of DME function gives no detectable phenotype in 𝘙. 𝘮𝘦𝘭𝘪𝘭𝘰𝘵𝘪 grown in culture but does result in bacteroids that are unable to fix nitrogen (Fix⁻). Expression of 𝘵𝘮𝘦 is reduced in bacteroids whereas 𝘥𝘮𝘦 expression remains unchanged. In order to overexpress 𝘵𝘮𝘦 in bacteroids a fusion gene was constructed with the 𝘥𝘮𝘦 promoter driving expression of the 𝘵𝘮𝘦 structural gene (𝘥𝘵𝘮𝘦). The 𝘥𝘵𝘮𝘦 gene was expressed and functional in 𝘙. 𝘮𝘦𝘭𝘪𝘭𝘰𝘵𝘪 cells grown in culture, but alfalfa plants inoculated with strains expressing only the 𝘥𝘵𝘮𝘦 gene were Fix⁻. In addition the NAD⁺-dependent malic enzyme gene from 𝘚𝘵𝘳𝘦𝘱𝘵𝘰𝘤𝘰𝘤𝘤𝘶𝘴 𝘣𝘰𝘷𝘪𝘴 (𝘮𝘢𝘦𝘌) was similarly cloned downstream of the 𝘥𝘮𝘦 promoter. The fusion gene 𝘥𝘮𝘢𝘦𝘌 was expressed in 𝘙. 𝘮𝘦𝘭𝘪𝘭𝘰𝘵𝘪 cells grown in culture, surprisingly plants inoculated with strains expressing only the 𝘥𝘮𝘢𝘦𝘌 gene showed a Fix⁻ phenotype. A truncated 𝘥𝘮𝘦 gene was constructed which contained only the N-terminal, malic enzyme domain of the protein (𝘥𝘮𝘦Δ𝘗𝘴𝘵). The truncated enzyme was expressed and active in 𝘙. 𝘮𝘦𝘭𝘪𝘭𝘰𝘵𝘪 cells grown in culture and gave a Fix⁺ phenotype when inoculated onto alfalfa plants. / Thesis / Master of Science (MS)
30

TOWARDS THE MINIMAL SYMBIOTIC GENOME OF SINORHIZOBIUM MELILOTI

Huang, Jiarui January 2019 (has links)
Sinorhizobium meliloti is a model bacterium for the study of symbiotic nitrogen fixation (SNF). It infects the roots of alfalfa as well as some other legumes and differentiates into N2-fixing bacteroids within the plant cells of specialized nodule organs. To understand genes essential for SNF and, in the longer term, to facilitate the manipulation of this SNF process for agricultural purposes, it is highly desirable to construct the minimal genome for SNF in this organism. S. meliloti harbors two replicons required for SNF, a 1.7-Mb chromid (pSymB) and a 1.4-Mb megaplasmid (pSymA). A previous deletion analysis revealed that only four gene regions, accounting for <12% of the total sequences of pSymA and pSymB that, were essential for SNF. In the first part of the thesis, I report the cloning of these two pSymA SNF-essential regions on a plasmid (pTH3255) in Escherichia coli, and the integration of this plasmid into the genome of a ∆pSymA S. meliloti derivative strain (the strain was named as RmP4291 after integration). Plant root dry weight and nitrogenase-catalyzed acetylene reduction assays were carried out on RmP4291 with four host plants, including Medicago sativa, Medicago truncatula, Melilotus alba and Melilotus officinalis. Nodule kinetic assays were also performed on RmP4291 and RmP110(wt). The results showed that the SNF-essential regions from pSymA were sufficient to restore the symbiotic capabilities to the ∆pSymA derivative strain with all the host plants tested, except a significant reduction (~40%) in SNF by RmP4291 was noticed on M. officinalis compared to that by wildtype S. meliloti. A higher alfalfa nodulation efficiency of RmP4291 compared to that of wildtype RmP110 was also discovered. In the second part of the thesis, a histochemical staining method for S. meliloti nodules was developed by integrating the marker genes gusA (β-glucuronidase) and celB (β-glucosidase) into the S. meliloti genome. This staining method was found to be useful in the study of nodule competitiveness. A nodule competition assay was carried out between RmP4291 and RmP110 using the new staining method. RmP4291 was found to be significantly reduced in nodulation competitiveness compared to wildtype S. meliloti. The development of the histochemical staining method for S. meliloti nodules will accelerate the identification of genes required for nodule competitiveness in the organism, which will be of crucial importance to the construction of the minimal genome strains with high SNF efficiency. / Thesis / Master of Science (MSc) / Nitrogen is one of the critical elements for life. Biological nitrogen fixation plays a crucial role in providing fixed nitrogen for the ecosystem on Earth. Our Laboratory has endeavored to establish a minimal symbiotic genome in Sinorhizobium meliloti, a model nitrogen fixing bacterium which forms symbiosis with certain kinds of legumes. Building this minimal symbiotic genome will improve our understanding of the symbiotic nitrogen fixation process in S. meliloti at gene level. It may also help in eventually introducing a nitrogen fixation system into other organisms. In this study, the minimal symbiotic genome of the pSymA replicon in S. meliloti was constructed. In addition, a staining method to detect specific S. meliloti strains in nodules was established. This method is potentially useful in finding genes related to nodule competitiveness, and these are potentially important for augmenting the genes that constitute the minimal symbiotic genome.

Page generated in 0.1263 seconds