1 |
An explanation for the mysterious distribution of melanin in human skin ‐ a rare example of asymmetric (melanin) organelle distribution during mitosis of basal layer progenitor keratinocytesJoly-Tonetti, Nicolas, Wibawa, J.I.D., Bell, M., Tobin, Desmond J. 29 June 2018 (has links)
Yes / Background: Melanin is synthesized by melanocytes in the basal layer of the epidermis. When transferred to surrounding keratinocytes it is the key UVR-protective biopolymer responsible for skin pigmentation. Most melanin is observable in the proliferative basal layer of the epidermis, and only sparsely distributed in the stratifying/differentiating epidermis. The latter has been explained, despite formal evidence, to ‘melanin degradation’ in supra-basal layers.
Objectives: Our aim was to re-evaluate this currently-accepted basis for melanin distribution in the human skin epidermis, and whether this pattern is altered after a regenerative stimulus.
Methods: Normal epidermis of adult human skin, at rest and after tape-stripping, was analysed by a range of (immuno)histochemical and high-resolution microscopy techniques. In vitro models of melanin granule uptake by human keratinocytes were attempted.
Results: We propose a wholly different fate for melanin in the human epidermis. Our evidence indicates that the bulk of melanin is inherited only by the non-differentiating daughter cell post mitosis in progenitor keratinocytes, via asymmetric organelle inheritance. Moreover, this preferred pattern of melanin distribution can switch to a symmetric or equal daughter cell inheritance mode under conditions of stress including regeneration.
Conclusions: We provide in this preliminary report a plausible and histologically-supportable explanation for how human skin pigmentation is efficiently organized in the epidermis. Steady state epidermis pigmentation may involve much less redox-sensitive melanogenesis than previously thought, and at least some pre-made melanin may be available for re-use. The epidermal-melanin unit may be an excellent example to study organelle distribution via asymmetric or symmetric inheritance in response to micro-environment and tissue demands. / Walgreens Boots Alliance
|
2 |
The Role of DNA Damage in Skin Stem CellsKarambela, Andriana 01 June 2017 (has links)
The accurate maintenance of genomic integrity in stem cells (SCs) is essential for tissue homeostasis and its deregulation leads to developmental defects, cancer and ageing. We have shown that Brca1, key homologous recombination (HR) gene and critical regulator of the choice of the DNA double strand break (DSB) repair pathway, is specifically required for hair follicle formation and the establishment and maintenance of adult hair follicle SC pool in a conditional knock-out (CKO) mouse model. Brca1 loss leads to DNA damage-induced cell death in the hair follicle (HF), particularly in the matrix transient amplifying progenitors and moderately so in prospective quiescent adult HF SCs. This cell loss causes compensatory hyper-proliferation of the prospective HF SCs and their subsequent depletion. In striking contrast, the interfollicular epidermis (IFE) and its resident SCs remain unaffected by Brca1 deletion. I uncovered two mechanisms underlying the ability of the SCs and progenitors of the IFE to survive the deletion of Brca1. Collectively, this data reveals how distinct SCs and progenitors respond differently to Brca1 loss. Furthermore we show how the IFE can survive Brca1 loss through the use of two particular mechanisms as to sustain tissue homeostasis. The mechanisms uncovered here are likely to be relevant in other tissue-specific SCs and will have important implications in understanding cancer initiation and ageing. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0638 seconds