• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modulation of Ferroptosis by the Classical p53/p21/CDK/RB/E2F Pathway

Kuganesan, Nishanth 15 June 2023 (has links)
No description available.
2

神経膠芽腫細胞におけるグルコース依存性及びSLC7A11/xCT発現制御に対する細胞密度の影響と分子機構の研究

山口, 一樹 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(生命科学) / 甲第25451号 / 生博第522号 / 京都大学大学院生命科学研究科高次生命科学専攻 / (主査)教授 木村 郁夫, 教授 垣塚 彰, 教授 原田 浩 / 学位規則第4条第1項該当 / Doctor of Philosophy in Life Sciences / Kyoto University / DFAM
3

Exploring the Role of Selenocysteine Biosynthesis Enzyme SEPHS2 in Cancer

Carlisle, Anne E. 06 November 2020 (has links)
Selenium is a micronutrient that is used by the selenocysteine biosynthesis pathway to produce the amino acid selenocysteine, which is required in selenoproteins. Many of the 25 human selenoproteins, such as glutathione peroxidases and thioredoxin reductases, play important roles in maintaining cellular redox homeostasis. In this study we characterize how this metabolic pathway is upregulated in cancer cells and how this increase in activity creates a unique vulnerability. We have outlined the evidence and underlying mechanisms for how many metabolites normally produced in cells are highly toxic, and we describe this concept as illustrated in selenocysteine metabolism. My thesis explores how SEPHS2, an enzyme in the selenocysteine biosynthesis pathway, is essential for survival of cancer, but not normal cells. SEPHS2 is required in cancer cells to detoxify selenide, an intermediate that is formed during selenocysteine biosynthesis. Breast and other cancer cells are selenophilic, owing to a secondary function of the cystine/glutamate antiporter SLC7A11 that promotes selenium uptake and selenocysteine biosynthesis, which, by allowing production of selenoproteins such as GPX4, protects cells against ferroptosis. However, this activity also becomes a liability for cancer cells because selenide is poisonous and must be processed by SEPHS2. These results show that SEPHS2 is a cancer specific target and indicates the therapeutic potential of SEPHS2 inhibition in the treatment of cancer. Collectively, this thesis identifies SEPHS2 as a targetable vulnerability of cancer cells, defines the role of selenium metabolism in cancer, and outlines a roadmap for future studies regarding toxic metabolites and cancer.
4

STUDIES ON THE PATHOPHYSIOLOGY OF CANCER-INDUCED BONE PAIN

Ungard, Robert G January 2020 (has links)
Metastatic bone cancers cause severe symptoms including pain that compromises patient functional status, quality of life, and survival. Current treatment strategies have limited efficacy and dose-limiting side effects. Cancer-induced bone pain (CIBP) is a unique pain state that shares features with but is distinct from the pathology of neuropathic and inflammatory pain. This dissertation investigates how CIBP is generated and maintained by the direct effects of cancer cells on their metastatic microenvironment and the peripheral nervous system, including unique signaling properties and gene expression changes. In particular, we found that genetic knockdown of the functional subunit xCT of the system xC- cystine/glutamate antiporter can reduce CIBP, further elucidating this as a therapeutic of interest. We found that the neuroprotective voltage-gated calcium channel inhibitors progesterone and pregabalin markedly reduce mechanical hypersensitivity and excitability in sensory neurons of the dorsal root ganglion (DRG) in male rat models of neuropathic pain, but that these effects and less pronounced in females. In cancer pain, these sex differences are reversed, with females but not males demonstrating a delay in time-to-onset of mechanical hypersensitivity. We also analyzed gene expression at the DRG by RNA-Sequencing of rat models of CIBP. Our findings uncovered differential gene expression between CIBP and sham controls and between ipsilateral and contralateral DRGs in CIBP model rats. These studies have identified several promising avenues for therapeutic research for CIBP. / Dissertation / Doctor of Philosophy (PhD) / The tools we have right now to manage severe and chronic pain are insufficient. Patients with advanced cancers including bone cancer can suffer from very severe pain. This pain is generated in a number of ways including by the tumour itself releasing chemicals that activate pain-sensing nerves, by the destruction of the bone in and around the tumour, and by the sensitization of the nervous system, which can make pain worse and longer lasting. We have taken three approaches to researching cancer pain and to investigating new treatments. We have found that by reducing the amount of glutamate that cancer cells can release into their environment, we can reduce cancer pain in mice. We also found that treating rats with pregabalin and progesterone can change nerve signaling and reduce neuropathic pain, but that this effect is most pronounced in male rats with neuopathic pain and smaller in female rats with neuropathic pain, and even smaller in rats with cancer pain. We also analyzed expression of all the protein-coding genes in dorsal root ganglia from rats with cancer pain and found that there are many differences from rats without pain. Some of these differences may be promising new research targets. Going forward this research has provided important evidence necessary for next steps to develop new therapies and research strategies for cancer pain.

Page generated in 0.028 seconds