• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The geomorphology of Antarctic submarine slopes

Gales, Jenny Anne January 2013 (has links)
The Antarctic continental margin contains a diverse range of continental slope morphologies, including iceberg keel marks, gullies, channels, mass-wasting features (slides, slumps), ridges, furrows, mounds and trough mouth fans. These features vary significantly in morphology, with bedforms varying in size (width, amplitude and length), shelf incision, sinuosity, branching order, spatial density and cross-sectional shape. The processes which form these features and the environmental controls influencing their morphology are not well documented or well constrained. Understanding the processes operating on the Antarctic continental margin is essential for interpreting seafloor erosion patterns, continental margin evolution, slope instability and sediment core records from the continental slope and rise. Through quantitative analysis of multibeam bathymetric data along >2670 km of the outer shelf and upper-slope of high latitude continental margins, five distinct Antarctic gully types are identified. Gully morphology was found to vary with local slope character (slope geometry, gradient), regional factors (location of cross-shelf troughs, trough mouth fans and drainage basin size), sediment yield and ice-sheet history. Most gullies are likely formed by: (1) flows generated as a result of the release of subglacial meltwater from beneath an ice-sheet grounded to the shelf edge during glacial maxima; (2) turbidity currents initiated by intense iceberg scouring; or (3) small-scale mass-wasting. Erosion by cascading dense water overflow does not form the deeply incised and V-shaped gullies that occur over much of the Antarctic continental margin. A comparison of some Arctic and Antarctic gully morphologies shows that the Antarctic gullies have much deeper mean incision depths and greater shelf-incisions, suggesting that they either formed over significantly longer periods, or by a greater release of meltwater in the areas with greater gully incision depths. The first morphological analysis of the southern Weddell Sea outer shelf and upper slope is presented. Two large and relatively recent submarine slides occur on the Crary Fan, the first Quaternary slides to be documented on an Antarctic trough mouth fan. These slides provide evidence for recent large-scale mass-wasting events on the Antarctic continental margin. The interpretation of bedforms on the outer shelf of the southeastern Weddell Sea provide insight into the timing and extent of past ice and points to grounded ice near to the shelf edge during the Late Quaternary.
2

Alpine lake sediment archives and catchment geomorphology : causal relationships and implications for paleoenvironmental reconstructions

Rubensdotter, Lena January 2006 (has links)
<p>Lake sediments are frequently used as archives of climate and environmental change. Minerogenic sediment variability in alpine lakes is often used to reconstruct past glacier and slope process activity. Alpine lake sediments can however have many different origins, which may induce errors in paleoenvironmental reconstructions. The aim of this project was to enhance the understanding of minerogenic lake sedimentation in alpine lakes and improve their use as environmental archives.</p><p>Catchment geomorphology and Holocene sediment sequences were analysed for five alpine lakes. Several minerogenic sediment sources were detected in catchments and sediment sequences. Slope-, fluvial-, periglacial-, nival- and aeolian sediment transportation processes contribute to create complex lake sediment patterns. Large variations in sedimentation rates were discovered within and between lakes, which has implications for sampling strategies and age-model constructions. Similar fine-grained minerogenic laminations were found in four of the investigated lakes, despite large differences in setting. The demonstrated similarity between glacial and non-glacial lakes may complicate interpretations of glaciolacustrine sediment signals.</p><p>The main conclusion is that lake sedimentation in alpine environments is highly dependent on several geomorphological factors. All lakes should therefore be viewed as unique and the geomorphology should be thoroughly investigated before environmental reconstructions are based on lake sediment proxies. This study has confirmed the multi-source origin of alpine lake sediment, which also opens possibilities of more multi-faceted paleoenvironmental studies. Different process-proxies could potentially be used to separate different climate signals, e.g. precipitation, temperature and wind, in lake sediments. Analysis of grain-size distribution, detailed mineralogy and magnetic mineralogy in combination with X-ray radiography are suggested methods for such reconstructions.</p>
3

Alpine lake sediment archives and catchment geomorphology : causal relationships and implications for paleoenvironmental reconstructions

Rubensdotter, Lena January 2006 (has links)
Lake sediments are frequently used as archives of climate and environmental change. Minerogenic sediment variability in alpine lakes is often used to reconstruct past glacier and slope process activity. Alpine lake sediments can however have many different origins, which may induce errors in paleoenvironmental reconstructions. The aim of this project was to enhance the understanding of minerogenic lake sedimentation in alpine lakes and improve their use as environmental archives. Catchment geomorphology and Holocene sediment sequences were analysed for five alpine lakes. Several minerogenic sediment sources were detected in catchments and sediment sequences. Slope-, fluvial-, periglacial-, nival- and aeolian sediment transportation processes contribute to create complex lake sediment patterns. Large variations in sedimentation rates were discovered within and between lakes, which has implications for sampling strategies and age-model constructions. Similar fine-grained minerogenic laminations were found in four of the investigated lakes, despite large differences in setting. The demonstrated similarity between glacial and non-glacial lakes may complicate interpretations of glaciolacustrine sediment signals. The main conclusion is that lake sedimentation in alpine environments is highly dependent on several geomorphological factors. All lakes should therefore be viewed as unique and the geomorphology should be thoroughly investigated before environmental reconstructions are based on lake sediment proxies. This study has confirmed the multi-source origin of alpine lake sediment, which also opens possibilities of more multi-faceted paleoenvironmental studies. Different process-proxies could potentially be used to separate different climate signals, e.g. precipitation, temperature and wind, in lake sediments. Analysis of grain-size distribution, detailed mineralogy and magnetic mineralogy in combination with X-ray radiography are suggested methods for such reconstructions.
4

Landscape partitioning and burial processes of soil organic carbon in contrasting areas of continuous permafrost

Palmtag, Juri January 2017 (has links)
Recent studies have shown that permafrost soils in the northern circumpolar region store almost twice as much carbon as the atmosphere. Since soil organic carbon (SOC) pools have large regional and landscape-level variability, detailed SOC inventories from across the northern permafrost region are needed to assess potential remobilization of SOC with permafrost degradation and to quantify the permafrost carbon-climate feedback on global warming. This thesis provides high-resolution data on SOC storage in five study areas located in undersampled regions of the continuous permafrost zone (Zackenberg in NE Greenland; Shalaurovo and Cherskiy in NE Siberia; Ary-Mas and Logata in Taymyr Peninsula). The emphasis throughout the five different study areas is put on SOC partitioning within the landscape and soil horizon levels as well as on soil forming processes under periglacial conditions. Our results indicate large differences in mean SOC 0–100 cm storage among study areas, ranging from 4.8 to 30.0 kg C m-2, highlighting the need to consider numerous factors as topography, geomorphology, land cover, soil texture, soil moisture, etc. in the assessment of landscape-level and regional SOC stock estimates. In the high arctic mountainous area of Zackenberg, the mean SOC storage is low due to the high proportion of bare grounds. The geomorphology based upscaling resulted in a c. 40% lower estimate compared to a land cover based upscaling (4.8 vs 8.3 kg C m-2, respectively). A landform approach provides a better tool for identifying hotspots of SOC burial in the landscape, which in this area corresponds to alluvial fan deposits in the foothills of the mountains. SOC burial by cryoturbation was much more limited and largely restricted to soils in the lower central valley. In the lowland permafrost study areas of Russia the mean SOC 0–100 cm storage ranged from 14.8 to 30.0 kg C m-2. Cryoturbation is the main burial process of SOC, storing on average c. 30% of the total landscape SOC 0–100 cm in deeper C-enriched pockets in all study areas. In Taymyr Peninsula, the mean SOC storage between the Ary-Mas and Logata study areas differed by c. 40% (14.8 vs 20.8 kg C m-2, respectively). We ascribe this mainly to the finer soil texture in the latter study area. Grain size analyses show that cryoturbation is most prominent in silt loam soils with high coarse silt to very fine sand fractions. However, in profiles and samples not affected by C-enrichment, C concentrations and densities were higher in silt loam soils with higher clay to medium silt fractions. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p>

Page generated in 0.0475 seconds