• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 58
  • 13
  • 12
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementation of the WirelessHART MAC Layer in the OPNET Simulator

Yipeng, Wang January 2013 (has links)
Industrial wireless sensor network (IWSN) is an application area of WSN used in industrial process monitoring and control with strict time and reliability requirement. WirelessHART standard is the first international standard for IWSN approved by International Electrotechnical Commission (IEC). This is worthwhile to implement this standard on simulator platform. Based on the study of WirelessHART standard, this thesis set up a primary implementation of the MAC layer of WirelessHART standard. To our best knowledge, this is the first comprehensive implementation of WirelessHART using OPNET simulator. The implementation has been evaluated rational. And some improvement of current implementation and standard have also been proposed and implemented. Flexible dedicated slot assignment has also been proposed to reduce the packet loss rate caused by influences of the physical channel.
2

Analysis of the flow field between two eccentric rotating cylinders in the presence of a slotted sleeve.

Hird, Lee D. January 1997 (has links)
Overend et al [68] designed a viscometer to measure the viscosity of slurries that have a tendency to settle. This viscometer consists of a rotating ribbed rotor surrounded by a stationary slotted sleeve; this system is then placed eccentrically within an inclined rotating bowl. It, is claimed that this overcomes most of the difficulties encountered when attempting to obtain accurate measurements for these types of mixtures. If the mixture being sheared within the annulus does not represent the true composition of the slurry being, tested then the results are expected to be inaccurate. The presence of sediment at the bottom of the rotor or the formation of large masses of particles within the flow domain will affect the accuracy of the measurements obtained. This dissertation studies the amount of flow through the slotted sleeve and the region, or regions, of low shear rate within the flow domain. Assuming that end-effects are unimportant and that the slurries can be replaced by a single-phase fluid, three two-dimensional models are proposed. These models are designed to capture the large-slot construction of the sleeve and the, approximate, non-Newtonian behaviour of the slurries. The first two models solve analytically (using a regular perturbation scheme) and numerically (using a finite volume method) the moderate-and large-Reynolds-number flow, and the third model uses a finite volume method to study the flow patterns developed by pseudoplastic fluids. The results show that the mixing of the slurry is expected to be enhanced by moving the concentric system (i.e., the rotor and the slotted sleeve) close to the rotating bowl and using low to moderate speeds for the rotor and bowl. In addition, when the cylinders rotate in the same directions, two (counter-rotating) eddies are present within the flow domain; whereas, only one eddy (rotating counter-clockwise) is ++ / present when the cylinders rotate in opposite directions. The presence of eddies in the former situation inhibits the flow through the sleeve; while, for moderate rotorspeeds, the flow through the sleeve is enhanced in the latter. When the slurry assumed pseudoplastic, we observe a region of low shear rate located near the dividing streamline present within the flow field. The distribution of shear rate within the flow field is shown to be affected by factors such as the rate of diffusion of the apparent viscosity and the value of the power law index. Therefore, this study suggests that for certain types of slurries, concentrations of particles exist within the domain and that the mixing of slurries can be impeded by the presence of eddies within the main flow field.
3

Response of a slotted plate flow meter to horizontal two phase flow

Muralidharan, Vasanth 17 February 2005 (has links)
The slotted plate flow meter has been widely tested as an obstruction flow meter during the past several years. It has been tested for both single-phase flows as well as for two-phase flows. Previous studies have revealed that the slotted plate flow meter is always better in performance and accuracy than the standard orifice plate flow meter. This study is primarily based on how a slotted plate responds to horizontal two-phase flow with air and water being used as the working fluids. The plates under consideration are those with beta ratios of 0.43 and 0.467. Experiments have been performed with six different configurations of the slotted plate test sections. The performances of the slotted plate flow meters will be compared to that of a standard orifice plate flow meter and then with a venturi. The effects of varying the upstream quality of the two-phase flow on the differential pressure and the coefficient of discharge of the slotted plates, the standard orifice plate and the venturi will be evaluated. Response characteristics at low differential pressures will be investigated. Tests for repeatability will be performed by studying the effects of the gas Reynolds number and the upstream quality on the differential pressure. The differential pressures across the slotted plates, the standard orifice plate and the venturi will be compared. Reproducibility will be evaluated by comparing the data obtained from all six different configurations. One of the main objectives of this study is to arrive at the best suitable procedure for accurately measuring the flow rate of two-phase flow using the slotted plate flow meter.
4

Two phase mixing comparison, oil contamination comparison and manufacturing accuracy effect on calibration of slotted orifice meter

Sparks, Sara A. 15 November 2004 (has links)
In previous studies the slotted orifice plate has demonstrated superior performance characteristics to those of the standard orifice plate. In this study, these comparisons are investigated further. The response characteristics of the slotted orifice plate to the standard orifice plate and V-Cone for two-phase flows of water and air at various qualities, flow rates, and pressures are shown visually. The effect of oil as it flows through a slotted orifice plate and standard orifice plate are visually documented. The effect of manufacturing accuracy on the slotted orifice plates is investigated as to the effect on the coefficient of discharge, percent change in pressure, and Reynolds number. The slotted orifice plate mixes two-phase flow better than the standard orifice plate and V-Cone. There is a manufacturing effect on the slotted orifice plates; the larger the area of the slots, the larger the discharge coefficient.
5

Two phase mixing comparison, oil contamination comparison and manufacturing accuracy effect on calibration of slotted orifice meters

Sparks, Sara A. 15 November 2004 (has links)
In previous studies the slotted orifice plate has demonstrated superior performance characteristics to those of the standard orifice plate. In this study, these comparisons are investigated further. The response characteristics of the slotted orifice plate to the standard orifice plate and V-Cone for two-phase flows of water and air at various qualities, flow rates, and pressures are shown visually. The effect of oil as it flows through a slotted orifice plate and standard orifice plate are visually documented. The effect of manufacturing accuracy on the slotted orifice plates is investigated as to the effect on the coefficient of discharge, percent change in pressure, and Reynolds number. The slotted orifice plate mixes two-phase flow better than the standard orifice plate and V-Cone. There is a manufacturing effect on the slotted orifice plates; the larger the area of the slots, the larger the discharge coefficient.
6

Response of a slotted plate flow meter to horizontal two phase flow

Muralidharan, Vasanth 17 February 2005 (has links)
The slotted plate flow meter has been widely tested as an obstruction flow meter during the past several years. It has been tested for both single-phase flows as well as for two-phase flows. Previous studies have revealed that the slotted plate flow meter is always better in performance and accuracy than the standard orifice plate flow meter. This study is primarily based on how a slotted plate responds to horizontal two-phase flow with air and water being used as the working fluids. The plates under consideration are those with beta ratios of 0.43 and 0.467. Experiments have been performed with six different configurations of the slotted plate test sections. The performances of the slotted plate flow meters will be compared to that of a standard orifice plate flow meter and then with a venturi. The effects of varying the upstream quality of the two-phase flow on the differential pressure and the coefficient of discharge of the slotted plates, the standard orifice plate and the venturi will be evaluated. Response characteristics at low differential pressures will be investigated. Tests for repeatability will be performed by studying the effects of the gas Reynolds number and the upstream quality on the differential pressure. The differential pressures across the slotted plates, the standard orifice plate and the venturi will be compared. Reproducibility will be evaluated by comparing the data obtained from all six different configurations. One of the main objectives of this study is to arrive at the best suitable procedure for accurately measuring the flow rate of two-phase flow using the slotted plate flow meter.
7

Slotted Spiral Antennas and Widebandwidth Array Systems

Zhang, Piyou January 2008 (has links)
No description available.
8

Separation of oil drops from produced water using a slotted pore membrane

Ullah, Asmat January 2014 (has links)
Microfiltration is one of the most important processes in membrane sciences that can be used for separating drops/particles above 1 ??m. Depth microfiltration membranes retain drops/particles inside the surface of the membrane, the process is expensive and membranes quickly become fouled. On the other hand, surface microfiltration membranes stop drops/particles on the surface of the membrane and the process is less fouling. Higher permeate flux and lower trans-membrane pressure is obtained with a shear enhanced microfiltration technique. Production of specific size of drops and stability of the drops are very important in testing the microfiltration of crude oil drops/water emulsions. Oil drops from 1-15 ??m were produced with a food blender, operated at its highest speed for the duration of 12 mins. In addition, vegetable oil drops were stabilised with 1% polyvinyl alcohol (PVA), Tween 20 and gum Arabic, stability was assessed on the basis of consistency in the size distribution and number of drops in each sample analysed at 30 mins interval. A slotted pore Nickel membrane with the slot width and slot length of 4 and 400 ??m respectively has been used in the filtration experiments. The slot width to the slot length ratio (aspect ratio) of the used membrane is 100. Vibrating the membrane at various frequencies created shear rates of different intensities on the surface of the membrane. Membrane with a tubular configuration is preferred over the flat sheet because it is easy to control in-case of membrane oscillations both at lab and industrial scale. Besides this, a tubular membrane configuration provides a smaller footprint as compared to the flat sheet. The influence of applied shear rate on slots/pore blocking has been studied. Applying shear rate to the membrane reduced the blocking of the slots of the membrane; and reduction of slots blocking is a function of the applied shear rate. At higher shear rate, lower blocking of the slots of the membrane was verified by obtaining lower trans-membrane pressure for constant rate filtration. The experiments are in reasonable agreement with the theoretical blocking model. Divergence of the experimental data from the theory may be due to involvement of deforming drops in the process. During microfiltration of oil drops, the drops deform when passing through the slots or pores of the membrane. Different surfactants provided different interfacial tensions between the oil and water interface. The influence of interfacial tension on deformation of drops through the slots was studied. The higher the interfacial tension then the lower would be the deformation of drops through the slots. A mathematical model was developed based on static and drag forces acting on the drops while passing the membrane. The model predicts 100% cut-off of drops through the membrane. Satisfactory agreement of the model with the experiments shows that the concept of static and drag force can be successfully applied to the filtration of deformable drops through the slotted pore membranes. Due to the applied shear rate, inertial lift migration velocities of the drops away from the surface of the membrane were created. Inertial lift velocities are linear functions of the applied shear rate. A mathematical model was modified based on inertial lift migration velocities. The critical radius of the drops is the one above which drops cannot pass through the surface of the membrane into the permeate due to the applied shear rate and back transport. The model is used as a starting point and is an acceptable agreement with the experiment. The model can be used to predict the 100% cut-off value for oil drops filtration and a linear fit between this value and the origin on a graph of grade (or rejection) efficiency and drop size to slot width ratio was used to predict the total concentration of dispersed oil left after filtration. Hence, it is shown how it is possible to predict oil discharge concentrations when using slotted filters.
9

Adaptive Slot Location in the Design of Slotted Microstrip Multi-Frequency Antenna for Radionavigation and Radiolocation Applications

Agbor, Ikechukwu Wilson 08 1900 (has links)
In light of incidents and concerns regarding the vulnerability of the global positioning system (GPS), the main purpose of the thesis is to look at alternative systems for radio guidance and to put up a serious study on such alternatives with receive and transmit antenna. There is also the need to design such antennas with multiple frequencies to offer robustness in the unlikely event that such adversarial attacks on the GPS happen. The basis on which such alternative antennas are designed is a slotted microstrip. The characteristics of the slot or slots on the microstrip are analyzed by mapping their exact locations on the patch and then noting the resultant center frequencies, the return losses, and the bandwidth. The activities associated with this also focus on the design, fabrication, validation, and characterization of one or more slotted antennas prototypes. The measurement of the antenna prototypes does confirm several frequencies that coexist to see applications, in aeronautical radionavigation, fixed-mobile radionavigation, and radiolocation. The antennas could also feature in a wide-area augmentation system (WAAS), satellite ground link system (SGLS) as well as in surveillance and precision approach radars. Some variations of the antenna are deployed in the areas of law enforcement, surveillance, and unmanned aerial vehicle (UAV). Applications of the antenna in an unmanned ground vehicle (UGV) are feasible due to its multiple resonant frequencies. Radiolocation and radionavigation antennas have also been known to be mounted in UAVs or on tethered balloons along the borders of the United States to detect low-flying aircraft in support of drug interdiction programs.
10

3D Printed Frequency Scanning Slotted Waveguide Array with Wide Band Power Divider

Zhao, Kunchen 27 August 2019 (has links)
No description available.

Page generated in 0.045 seconds