• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using Remotely Piloted Aircraft and Infrared Technology to Detect and Monitor Greater Sage-Grouse

Thompson, Thomas R. 01 May 2018 (has links)
In wildlife management, using cutting edge technology and science to monitor greater sage-grouse (Centrocercus urophasianus; sage-grouse) populations, enables land managers to better assess the impact of their management decisions. Having precise counts of sage-grouse lek attendance, and specifically male lek attendance, is an important metric used to evaluate population status and response to conservation actions (Gifford et.al, 2013, Dahlgren et al., 2016). Leks are seasonal breeding sites where males perform a ritualistic courtship dance for females. Our case study examined if a Remotely Piloted Aircraft (RPA) was effective in detecting, and counting, sage-grouse during the lek season (early March to late April). More specifically, this research used a Forward-Looking Infrared (FLIR) camera (a thermal camera) to detect sage-grouse and determine body temperatures of individual sage-grouse to determine if temperature data can be used to identify displaying male sage-grouse. These images can be used to document the activity and behavior of sage-grouse and can be revisited at future times to document changes in bird numbers as well as perform additional statistical analyses. We conducted 5 flights and on a per-flight basis, we identified an average of 4.4 displaying males, 13.4 non-displaying males, and 5.6 female sage-grouse. We found that the average size and average maximum temperature of the three sage-grouse categories differed where females were smaller with an average body size of 325 cm2, an average maximum temperature of 14.6 C ̊, and a smaller average thermal range of 2.47 C ̊. Non-displaying male body size was approximately 488 cm2, with a maximum average temperature of 17.2 C ̊, and an average thermal range of 4.66C ̊. Displaying male body size was the largest at approximately 655 cm2, an average maximum temperature of 27.5C ̊, with the largest average range of 12.39C ̊. Our study demonstrates that RPA and infrared technology can be used to conduct accurate sage-grouse lek attendance counts. Further, results of this study will also provide a guideline for the use of RPA’s to monitor sage-grouse and other lekking species.
2

Use of consumer grade small unmanned aerial systems (sUAS) for mapping storm damage in forested environments

Cox, James Dewey 13 May 2022 (has links) (PDF)
Storm damages to forested environments pose significant challenges to landowners, land managers, and conservationists alike. Damage scope and scale assessments can be difficult, costly, and time consuming with conventional pedestrian survey techniques. Consumer grade sUAS technology offers an efficient, cost-effective way to accurately assess storm damage in small to moderate sized survey areas (less than 10 km²). Data were collected over a 0.195 km² area of damaged timber within the Kisatchie National Forest in Central Louisiana using a DJI Mavic 2 Pro drone. Collected imagery was processed into an orthomosaic using Agisoft Metashape Professional with a resulting ground sampling distance of 2.58 cm per pixel. Combined X and Y ground distance accuracy r was calculated as 1.39230 meters and a combined horizontal error was calculated as 0.810455526 meters. From the generated orthomosaic, the total storm damage area was estimated as 2.68 Ha, or 6.63 ac based on digitized polygon area calculations.

Page generated in 0.1051 seconds