Spelling suggestions: "subject:"smallangle neutron scattering"" "subject:"smallchange neutron scattering""
1 |
Nanoporous PlatinumPugh, Dylan Vicente 28 April 2003 (has links)
Dealloying is a corrosion process in which one or more elements are selectively removed from an alloy leading to a 3-dimensional porous structure of the more noble element(s). These porous structures have been known to cause stress corrosion cracking in noble metal alloy systems but more recent interest in using the corrosion process to produce porous metals has developed. Applications for these structures range from high surface area electrodes for biomedical sensors to use as skeletal structures for fundamental studies (e.g. low temperature heat exchangers or sensitivity of surface diffusivity to chemical environment). In this work we will review our current understanding of alloy corrosion including our most recent results demonstrating a more accurate method for calculating alloy critical potential based on potential hold experiments. The critical potentials calculated through the potential hold method were â 0.030VMSE, 0.110VMSE, and 0.175VMSE for Cu80Pt20, Cu75Pt25 Cu71Pt29 respectively. We will present the use of porous metals for making surface diffusivity measurements in the Pt systems as a function of chemical environment. A review of the use of small angle neutron scattering to make accurate measurements of pore size is presented and the sensitivity of pore size to electrolyte, electrolyte composition, applied potential and temperature will be explained. The production of porous Pt with pore sizes ranging from 2-200nm is demonstrated. / Ph. D.
|
2 |
Relating the Bulk and Interface Structure of Hyaluronan to Physical Properties of Future BiomaterialsBerts, Ida January 2013 (has links)
This dissertation describes a structural investigation of hyaluronan (HA) with neutron scattering techniques. HA is a natural biopolymer and one of the major components of the extracellular matrix, synovial fluid, and vitreous humor. It is used in several biomedical applications like tissue engineering, drug delivery, and treatment of osteoarthritis. Although HA is extensively studied, very little is known about its three-dimensional conformation and how it interacts with ions and other molecules. The study aims to understand the bulk structure of a cross-linked HA hydrogel, as well as the conformational arrangement of HA at solid-liquid interfaces. In addition, the structural changes of HA are investigated by simulation of physiological environments, such as changes in ions, interactions with nanoparticles, and proteins etc. Small-angle neutron scattering and neutron reflectivity are the two main techniques applied to investigate the nanostructure of hyaluronan in its original, hydrated state. The present study on hydrogels shows that they possess inhomogeneous structures best described with two correlation lengths, one of the order of a few nanometers and the other in the order of few hundred nanometers. These gels are made up of dense polymer-rich clusters linked to each other. The polymer concentration and mixing governs the connectivity between these clusters, which in turn determines the viscoelastic properties of the gels. Surface-tethered HA at a solid-liquid interface is best described with a smooth varying density profile. The shape of this profile depends on the immobilization chemistry, the deposition protocol, and the ionic interactions. HA could be suitably modified to enhance adherence to metal surfaces, as well as incorporation of proteins like growth factors with tunable release properties. This could be exploited for surface coating of implants with bioactive molecules. The knowledge gained from this work would significantly help to develop future biomaterials and surface coatings of implants and biomedical devices.
|
3 |
Untersuchungen an neutronenbestrahlten Reaktordruckbehälterstählen mit Neutronen-KleinwinkelstreuungUlbricht, Andreas 31 March 2010 (has links) (PDF)
In dieser Arbeit wurde die durch Bestrahlung mit schnellen Neutronen bedingte Materialalterung von Reaktordruckbehälterstählen untersucht. Das Probenmaterial umfasste unbestrahlte, bestrahlte und ausgeheilte RDB-Stähle russischer und westlicher Reaktoren sowie Eisenbasis-Modelllegierungen. Mittels Neutronen-Kleinwinkelstreuung ließen sich bestrahlungsinduzierte Leerstellen/Fremdatom-Cluster unterschiedlicher Zusammensetzung mit mittlerem Radius um 1.0 nm nachweisen. Ihr Volumenanteil steigt mit der Strahlenbelastung monoton, aber im allgemeinen nicht linear an. Der Einfluss der Elemente Cu, Ni und P auf den Prozess der Clusterbildung konnte herausgearbeitet werden. Eine Wärmebehandlung oberhalb der Bestrahlungstemperatur reduziert den Anteil der Strahlendefekte bis hin zu deren vollständiger Auflösung. Die Änderungen der mechanischen Eigenschaften der Werkstoffe lassen sich eindeutig auf die beobachteten Gefügemodifikationen zurückführen. Die abgeleiteten Korrelationen können als Hilfsmittel zur Vorhersage des Materialverhaltens bei fortgeschrittener Betriebsdauer von Leistungsreaktoren mit herangezogen werden.
|
4 |
Studies of ion electroadsorption in supercapacitor electrodesBoukhalfa, Sofiane 12 January 2015 (has links)
Electrochemical capacitors, now often termed supercapacitors, are high power electrochemical energy storage devices that complement or replace high power batteries in applications ranging from wind turbines to hybrid engines to uninterruptable power supplies to electronic devices. My dissertation explores the applications of relatively uncommon techniques for both supercapacitor material syntheses and gaining better mechanistic understanding of factors impacting electrochemical performance of supercapacitors. From fundamental ion electroadsorption studies made possible by using small angle neutron scattering (SANS), to the systematic investigations of coating thickness and microstructure in metal oxide / carbon nanocomposite electrodes realized through the novel use of the atomic layer deposition (ALD) technique, new avenues of material characterization and fabrication have been studied.
In this dissertation I first present the motivation to expand the knowledge of supercapacitor science and technology, and follow with an in-depth literature review of the state of the art. The literature review covers different types of supercapacitors, the materials used in the construction of commercial and exploratory devices, an exploration of the numerous factors which affect supercapacitor performance, and an overview of relevant materials synthesis and characterization techniques The technical objectives for the work performed in this dissertation are then presented, followed by the contributions that I made in this field in my two primary research thrusts: advances to the understanding of ion electroadsorption theory in both aqueous and organic electrolytes through the development of a SANS-based methodology, and advances to metal-oxide carbon nanocomposites as electrodes through the use of ALD.
The understanding of ion electro-adsorption on the surface of microporous (pores < 2 nm) solids is largely hindered by the lack of experimental techniques capable of identifying the sites of ion adsorption and the concentration of ions at the nanoscale. In the first research thrust of my dissertation, I harness the high penetrating power and sensitivity of neutron scattering to isotope substitution to directly observe changes in the ion concentration as a function of the applied potential and the pore size. I have conducted initial studies in selected aqueous and organic electrolytes and outlined the guidelines for conducting such experiments for the broad range of electrode-ions-solvent combinations. I unambiguously demonstrate that depending on the solvent properties and the solvent-pore wall interactions, either enhanced or reduced ion electro-adsorption may take place in sub-nanometer pores. More importantly, for the first time I demonstrate the route to identify the critical pore size below which either enhanced or reduced electrosorption of ions takes place. My studies experimentally demonstrate that poor electrolyte wetting in the smallest pores may indeed limit device performance. The proposed methodology opens new avenues for systematic in-situ studies of complex structure-property relationships governing adsorption of ions under applied potential, critical for rational optimization of device performance.
In addition to enhancing our understanding of ion sorption, there is a critical need to develop novel supercapacitor electrode materials with improved high-energy and high-power characteristics. The formation of carbon-transition metal oxide nanocomposites may offer unique benefits for such applications. Broadly available transition metal oxides, such as vanadium oxide, offer high ion storage capabilities due to the broad range of their oxidation states, but suffer from high resistivities. Carbon nanomaterials, such as carbon nanotubes (CNT), in contrast are not capable to store high ion content, but offer high and readily accessible surface area and high electrical conductivity. In the second research thrust of my thesis, by exploiting the ability of atomic layer deposition (ALD) to produce uniform coatings of metal oxides on CNT electrodes, I demonstrated an effective way to produce high power supercapacitor electrodes with ultra-high energy capability. The electrodes I developed showed stable performance with excellent capacitance retention at high current densities and sweep rates. Electrochemical performance of the oxide layers were found to strongly depend on the coating thickness. Decreasing the vanadium oxide coating thickness to ~10 nm resulted in some of the highest values of capacitance reported to date (~1550 F·g⁻¹VOx at 1 A·g⁻¹ current density). Similar methodology was utilized for the deposition of thin vanadium oxide coatings on other substrates, such as aluminum (Al) nanowires. In this case the VOₓ coated Al nanowire electrodes with 30-50% of the pore volume available for electrolyte access show volumetric capacitance of 1390-1950 F cc⁻¹, which exceeds the volumetric capacitance of porous carbons and many carbon-metal oxide composites by more than an order of magnitude. These results indicated the importance of electrode uniformity and precise control over conformity and thickness for the optimization of supercapacitor electrodes.
|
5 |
Droplet-Based Approaches to Probe Complex Behavior in Colloidal Fluids with High Composition ResolutionBleier, Blake J. 01 May 2018 (has links)
In this work, microfluidic and millifluidic droplets are utilized to study and control complex fluid behavior with high composition resolution. Different techniques are used on two length scales to create unique approaches towards the same goal of merging droplet-based experiments with classical colloidal characterization experiments. First, a microfluidic dehydrating droplet device is characterized and a procedure established by concentrating a phase separating organic-inorganic system on chip and using geometric calculations to determine composition. The device is then expanded to a more complex, particle-polymer system to investigate suspension stability and interparticle behavior. A model system containing silica particles and PEO polymer is found to transition from a bridging flocculation mechanism to polymer-coated particle jamming based on the mass ratio of polymer to particle. Lastly, a phase separating particle-polymer system consisting of polystyrene particles and hydroxyethyl cellulose is concentrated on-chip. Interparticle interactions are controlled by varying particle size, polymer size, and polymer type and the effects on phase behavior are examined. Droplet experiments are scaled-up to millifluidic droplets and concentration gradients are used to produce high composition resolution in place of time, used in the dehydrating microfluidic experiments. A novel, millifluidic containment device is created to study aggregation and sedimentation in droplets containing carbon black and OLOA surfactant suspended in dodecane. A slow increase in stabilization behavior is observed as opposed to the previously observed sharp “on-off” effect. The droplet production technique is then improved to achieve more complex composition paths and the device is expanded for a small angle neutron scattering (SANS) application. SANS is performed on flowing droplets with varying concentration to map interparticle interactions and phase behavior of complex particulate systems. Feasibility of device is demonstrated and preliminary model systems of silica particles and polymer, salt, and surfactant are analyzed and characterized.
|
6 |
Interactions between keratin and surfactants : a surface and solution studyLu, Zhiming January 2016 (has links)
Keratins are important structural components of hair and skin. There has been extensive study of keratins from the health and medical perspectives, although little work has been done to date to investigate their basic physicochemical properties in the form of biomaterials. The work presented in this thesis aimed to study surface and interfacial adsorption and solution aggregation of water soluble keratin polypeptides (made available by previous work within the research group). A range of physical techniques were employed including spectroscopic ellipsometry (SE), neutron reflection (NR), dual polarisation interferometry (DPI), quartz crystal microbalance with dissipation (QCM-D), dynamic light scattering (DLS) and small-angle neutron scattering (SANS).A major technical advantage of the neutron techniques is the use of hydrogen/deuterium substitution to enhance structural resolution. This approach was explored to study the interaction of keratins with both conventional surfactants and novel biosurfactants. The work presented comprises four results chapters. The first examines and compares four widely used interfacial techniques, SE, DPI, QCM-D and NR, by studying the adsorption of C12E6 at the silicon oxide/water interface. Whilst the data exhibits a large degree of consistency in the interfacially adsorbed amount, each technique helped reveal unique structural information with a high degree of complementarity. The second results chapter reports on findings regarding the properties of keratin polypeptides in surface adsorption and solution aggregation. It was found that the keratins adsorbed strongly on the surface of water, and formed rugby-shaped nanoaggregates in solution, the size and shape of which responded to salt concentration. The third results chapter reports on the interfacial behaviour of keratin/surfactants complexes in bulk solution, with cationic DTAB and anionic SDS as model conventional surfactants. It was found that both the electrostatic and hydrophobic forces contributed strongly to the surface adsorption processes. The final results chapter reports on interactions of a coated keratin film with novel biosurfactants including rhamnolipids (R1 and R2 with 1 and 2 sugar head(s), respectively) and Mel-C. The keratin films formed were found to be exceptionally stable and reproducible below pH 8, and these films could be widely used as model keratin substrates for screening their binding with surfactants and bioactive molecules. Both rhamnolipids and Mel-C exhibited strong adsorption onto the keratin substrate and interestingly, whilst R1 exhibited a completely reversible adsorption, R2 showed only a partially reversible adsorption. Mel-C showed some degree of irreversible adsorption similar to R2 and exhibited the strongest adsorption at around pH 4-5. These results show mild interactions with the keratin substrate, but indicate that the extent of adsorption and desorption could be manipulated by surfactant structure or solution conditions. The findings presented in this thesis are fundamental in aiding the development of the use of keratin polypeptides as biomaterials, in applications such as personal care. The work is also highly relevant to the understanding of the interactions between surfactants and keratin molecules at interfaces and in solution.
|
7 |
Untersuchungen an neutronenbestrahlten Reaktordruckbehälterstählen mit Neutronen-KleinwinkelstreuungUlbricht, Andreas January 2006 (has links)
In dieser Arbeit wurde die durch Bestrahlung mit schnellen Neutronen bedingte Materialalterung von Reaktordruckbehälterstählen untersucht. Das Probenmaterial umfasste unbestrahlte, bestrahlte und ausgeheilte RDB-Stähle russischer und westlicher Reaktoren sowie Eisenbasis-Modelllegierungen. Mittels Neutronen-Kleinwinkelstreuung ließen sich bestrahlungsinduzierte Leerstellen/Fremdatom-Cluster unterschiedlicher Zusammensetzung mit mittlerem Radius um 1.0 nm nachweisen. Ihr Volumenanteil steigt mit der Strahlenbelastung monoton, aber im allgemeinen nicht linear an. Der Einfluss der Elemente Cu, Ni und P auf den Prozess der Clusterbildung konnte herausgearbeitet werden. Eine Wärmebehandlung oberhalb der Bestrahlungstemperatur reduziert den Anteil der Strahlendefekte bis hin zu deren vollständiger Auflösung. Die Änderungen der mechanischen Eigenschaften der Werkstoffe lassen sich eindeutig auf die beobachteten Gefügemodifikationen zurückführen. Die abgeleiteten Korrelationen können als Hilfsmittel zur Vorhersage des Materialverhaltens bei fortgeschrittener Betriebsdauer von Leistungsreaktoren mit herangezogen werden.
|
8 |
Understanding Surfactant Skin Irritation by Probing the Relationship between the Structure and the Function of MicellesAde-Browne, Chandra 04 September 2018 (has links)
No description available.
|
9 |
Self Assembly In Aqueous And Non-aqueous Sugar-Oil MixturesDave, Hiteshkumar Rajeshkumar 16 April 2009 (has links)
No description available.
|
10 |
Nanoporosity Formation in Ag-Au AlloysDursun, Aziz 21 January 2004 (has links)
Selective dissolution also known as dealloying is a corrosion process in which one component of a binary alloy system is selectively removed through an electrochemically controlled process which leads to the formation of a porous metal "sponge" with a porosity that is completely interconnected and random in direction.
Nanoporous metals are desirable since they have larger surface areas than an equal volume of non-porous material. Because of their enormous surface area per volume, these highly porous metal electrodes are superior materials for high surface area applications such as in biomedical devices, microfilters and catalysts.
Understanding the kinetic processes governing the development of porosity during dealloying and having ability to change the electrochemical conditions will allow us to better control over the average ligament size and distribution in porosity. The basic kinetic processes involved in the formation of these structures are related to such issues as environmental effects and electrochemical conditions on diffusion, microscopic coarsening phenomenon at room temperature and elevated temperatures, alloy passivation, and Gibbs-Thomson effects.
The average pore size and distribution was found to depend on the electrolyte composition, dealloying rate, applied potential and time. The porosity was found to significantly coarsen at room temperature during the dealloying process and this coarsening was highly dependent on the applied potential.
It is showed that the commonly accepted measurement of the critical potential for alloy dissolution calculated based on extrapolation of anodic polarization data results in an overestimation of this quantity. A series of constant applied potential experiments prove to be a more accurate method for critical potential determination. / Ph. D.
|
Page generated in 0.1316 seconds