1 |
Elucidating Influence of Temperature and Environmental Stress on Turfgrass Response to Mesotrione and Evaluation of Potential Synergistic Admixtures to Improve Mesotrione EfficacyRicker, Daniel 06 January 2009 (has links)
Mesotrione is under evaluation for registration in turfgrass for weed control, but often requires repeat treatments. Previous research in agricultural crops indicates tank mixtures with mesotrione may improve weed control. Three field trials were conducted in 2005 and 2006 in Blacksburg, VA on smooth crabgrass in perennial ryegrass and tall fescue. Data indicate mesotrione applied in combination with bentazon, bromoxynil, or carfentrazone, controlled smooth crabgrass better than any of these herbicides applied alone at all sites. Adding mesotrione to MSMA and quinclorac improved smooth crabgrass on of three sites. Sequential mesotrione applications improved long term weed control. / Master of Science
|
2 |
Characterizing quinclorac-resistant smooth crabgrass (Digitaria ischaemum) control and possible metabolic mechanisms of resistancePutri, Atikah Dwi 12 May 2023 (has links) (PDF)
Quinclorac controls crabgrass (Digitaria spp.) post-emergence in cool- and warm-season turfgrass. A rate response study revealed that two Mississippi smooth crabgrass (Digitaria ischaemum) species (MSU1 and MSU2) are resistant to quinclorac. Following that, field experiments were carried out to evaluate programmatic approaches to control one of these populations. Despite prior study on quinclorac-resistant weeds, to date, quinclorac-resistant smooth crabgrass and its mechanism of resistance have only been reported once in California. The mechanism of resistance of MSU1 and MSU2 relative to susceptible (SMT) was then investigated. The SMT biotype accumulated three times more cyanide than the resistant populations. Glutathione-S-transferase (GST) activity was evaluated as a possible contributor to non-target site resistance. The GST activity was elevated in the MSU1 and MSU2 populations. These findings suggest a non-target site–based mechanism of resistance involving the accumulation of cyanide. Further research is needed to investigate potential target-site mechanisms of resistance.
|
3 |
Evaluation of Novel Techniques to Control Annual Grasses in Intensively Managed Turfgrass SystemsPeppers, John Michael 19 December 2023 (has links)
Annual grassy weeds are problematic in intensively managed turfgrass systems due to a lack of selective and affordable control options. Four projects were conducted from 2020-2023 to evaluate novel techniques for Annual bluegrass (Poa annua L.), goosegrass (Eleusine indica L. Gaertn.), and smooth crabgrass (Digitaria ischaemum Schreb.) control on golf course putting greens or putting green surrounds. Hybrid bermudagrass Cynodon transvaalensis Burtt. Davy. x dactylon L. Pers.) tolerated cumyluron regardless of application timing, endothall when applied during full dormancy, and methiozolin when applied during mid-transition. Methiozolin half-life in the upper 2-cm of 12 hybrid bermudagrass putting greens was approximately 14 days and was prolonged in similar studies by seven orders of magnitude when herbicide was applied to bare ground compared to adjacent Kentucky bluegrass (Poa pratensis L.) turf. In a study conducted in Alabama, California, Florida, and Virginia, methiozolin at labeled use rates applied biweekly controlled smooth crabgrass >80% in creeping bentgrass (Agrostis stolonifera L.) and hybrid bermudagrass turf. Although similar programs also controlled goosegrass, acceptable control required more applications than are allowed on the product label. Targeted application devices (TAD), such as spot sprayers and dabbers that are used for individual plant treatment of escaped weeds, were tested for uniformity of fluid delivery. Fluid output of dabbing devices was highly variable and dependent on reservoir fill level, reservoir air seal, human user, and contact time, but largely independent of peak force exerted during the dabbing event. These studies suggest that new products are available to improve annual grassy weed control in turfgrass systems, but proper application timing and device calibration is important to achieve best results. / Doctor of Philosophy / Annual grasses are difficult to control in "high-end" golf turf because few herbicides can be safely used near greens and key weeds have become resistant to the most common products. Several new products were tested for safety on hybrid bermudagrass greens. Methiozolin (PoaCure) was safe for use after post-dormancy greenup, endothall was safe when used while turf was still dormant, and cumyluron was safe regardless of application timing. The duration of preemergence weed control with methiozolin is reduced as temperatures increase and in turfgrass compared to bare ground systems. Half of the methiozolin product will dissipate in 14 days or less when applied to hybrid bermudagrass putting greens or Kentucky bluegrass lawns in spring. Methiozolin controlled smooth crabgrass for the entire season in several Southeastern states, but goosegrass control was slightly below acceptable levels when the product was used within annual dose restrictions. Applicators, such as dabbers and spot sprayers, that are used to treat individual plants improve turf safety and reduce chemical cost, but these devices had not been previously tested for uniformity of fluid output. Studies found that these devices can vary in output by several orders of magnitude depending on the type of devices used, the person using the device, and duration of contact with the turf as the user presses a dabbing device over a weed. Within-device errors were equally problematic and governed by the amount of downward pressure exerted by the fluid contained in the device reservoir. For every 10% of fluid capacity added, fluid dispense rate increases approximately 33%. When the air seal of the fluid fill cap is broken, fluid output approximately doubles compared to when this seal is maintained because loss of vacuum increases downward force of the fluid column. These studies suggest that new products are available to improve annual grassy weed control in ornamental turf, but proper application timing and device calibration is important to achieve best results.
|
4 |
Optimizing Topramezone and Other Herbicide Programs for Weed Control in Bermudagrass and Creeping Bentgrass TurfBrewer, John Richard 02 April 2021 (has links)
Goosegrass [Eleusine indica (L.) Gaertn.] and smooth crabgrass [Digitaria ischaemum (Schreb.) Schreb. ex Muhl.] are problematic weeds in bermudagrass and creeping bentgrass turf. Increased incidences of herbicide resistant weed populations and severe use restrictions on formerly available herbicides have increased need for selective, postemergence control options for these weeds in creeping bentgrass and bermudagrass turf. This weed management exigency has led turf managers to utilize less effective, more expensive, and more injurious options to manage goosegrass and smooth crabgrass. Although potentially injurious, topramezone can control these weeds, especially goosegrass, at low doses. Low-dose topramezone may also improve bermudagrass and creeping bentgrass response.
An initial investigation of three 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibiting herbicides in different turf types showed that Kentucky bluegrass, perennial ryegrass, and tall fescue were highly tolerant to topramezone, while creeping bentgrass and bermudagrass could tolerate topramezone doses that may control grassy weeds. Further investigation suggested that frequent, low-dose topramezone applications or metribuzin admixtures could enhance weed control and may conserve turfgrass quality. A novel mixture of topramezone at 3.7 g ae ha-1 and metribuzin at 210 g ai ha-1 controlled goosegrass effectively and reduced bermudagrass foliar bleaching associated with topramezone 10-fold compared to higher doses of topramezone alone in 19 field and 2 greenhouse trials. In an attempt to further enhance bermudagrass tolerance to topramezone, post-treatment irrigation was applied at various timings. When bermudagrass turf was irrigated with 0.25-cm water at 15 or 30 minutes after herbicide treatment, bermudagrass injury was reduced to acceptable levels when following low-dose topramezone plus metribuzin but not when following high-dose topramezone alone. Goosegrass control was reduced significantly by post-treatment irrigation in all cases, while irrigation reduced goosegrass control by low-dose topramezone plus metribuzin to below-commercially-acceptable levels. Novel, low-dose, frequent application programs containing topramezone or siduron were developed for season-long crabgrass or goosegrass control on creeping bentgrass greens. Greens-height creeping bentgrass quality was preserved following five biweekly treatments of siduron at rates between 3,400 to 13,500 g ai ha-1 and topramezone at 3.1 g ha-1. Siduron programs controlled smooth crabgrass and suppressed goosegrass while topramezone programs controlled goosegrass and suppressed smooth crabgrass.
In laboratory and controlled-environment experiments, goosegrass absorbed three times more 14C than bermudagrass within 48 hours of 14C-topramezone treatment. Bermudagrass also metabolized topramezone twice as fast as goosegrass. Metribuzin admixture reduced absorption by 25% in both species. When herbicides were placed exclusively on soil, foliage, or soil plus foliage, topramezone controlled goosegrass only when applied to foliage and phytotoxicity of both bermudagrass and goosegrass was greater from topramezone than from metribuzin. Metribuzin was shown to reduce 21-d cumulative clipping weight and tiller production of both species while topramezone caused foliar discoloration to newly emerging leaves and shoots with only marginal clipping weight reduction. These data suggest that selectivity between bermudagrass and goosegrass is largely due to differential absorption and metabolism that reduces bermudagrass exposure to topramezone. Post-treatment irrigation likely reduces topramezone rate load with a concomitant effect on plant phytotoxicity of both species. Metribuzin admixture decreases white discoloration of bermudagrass by decreased topramezone absorption rate and eliminating new foliar growth that is more susceptible to discoloration by topramezone. / Doctor of Philosophy / Goosegrass and smooth crabgrass are problematic weeds in bermudagrass and creeping bentgrass turf. Increased incidences of herbicide resistant weed populations and severe use restrictions on formerly available herbicides have increased need for selective, postemergence control options for these weeds in creeping bentgrass and bermudagrass turf. Although potentially injurious, topramezone (Pylex™) can control these weeds, especially goosegrass, at low doses. Low-dose Pylex™ may also improve bermudagrass and creeping bentgrass response.
An initial investigation evaluating tembotrione (Laudis®), Pylex™, and mesotrione (Tenacity®) in different turfgrass species showed that Kentucky bluegrass, perennial ryegrass, and tall fescue were highly tolerant to Pylex™ at rates ranging from 0.75 to 2.25 fl. oz./A, while creeping bentgrass and bermudagrass were low to moderately tolerant to Pylex™. Further investigation suggested that frequent, low-dose (less than 0.25 fl. oz./A) Pylex™ applications or metribuzin (Sencor®) admixtures could enhance weed control and may conserve turfgrass quality. A novel mixture of Pylex™ at 0.15 fl. oz./A and Sencor® at 4 oz. wt./A controlled goosegrass effectively and reduced bermudagrass injury to near acceptable levels and significantly less than Pylex™ applied alone at 0.25 fl. oz/A. In an attempt to further enhance bermudagrass tolerance to Pylex™, post-treatment irrigation was applied at different timings. When bermudagrass turf was irrigated at 15 or 30 minutes after herbicide treatment, bermudagrass injury was reduced to acceptable levels when following Pylex™ at 0.25 fl. oz./A plus Sencor® at 4 oz but not when following Pylex™ applied alone at 0.5 fl. oz./A. Goosegrass control was reduced significantly by post-treatment irrigation in all cases, while irrigation reduced goosegrass control by low-dose Pylex™ plus Sencor® to below-commercially-acceptable levels. Novel, low-dose, frequent application programs containing Pylex™ or siduron (Tupersan®) were developed for season-long crabgrass or goosegrass control in creeping bentgrass greens. Greens-height creeping bentgrass quality was preserved following five biweekly treatments of Tupersan® at rates between 6 and 24 lb./A and Pylex™ at 0.125 fl. oz./A. Tupersan® programs controlled smooth crabgrass and suppressed goosegrass while Pylex™ programs controlled goosegrass and suppressed smooth crabgrass.
The data from these studies indicate that utilizing low-dose Pylex™ in combination with Sencor® can impart acceptable bermudagrass safety while also controlling goosegrass effectively. For creeping bentgrass greens, the low-dose, frequent application of Tupersan® is the safest legal option for golf course superintendents to control smooth crabgrass effectively, while having some ability to suppress goosegrass.
|
Page generated in 0.0704 seconds