Spelling suggestions: "subject:"snakelike"" "subject:"snakebite""
11 |
Kinematics and Optimal Control of a Mobile Parallel Robot for Inspection of Pipe-like EnvironmentsSarfraz, Hassan 24 January 2014 (has links)
The objective of this thesis is to analyze the kinematics of a mobile parallel robot with contribution that pertain to the singularity analysis, the optimization of geometric parameters and the optimal control to avoid singularities when navigating across singular
geometric configurations. The analysis of the workspace and singularities is performed in a prescribed reference workspace regions using discretization method. Serial and parallel singularities are analytically analyzed and all possible singular configurations are presented. Kinematic conditioning index is used to determine the robot’s proximity to a singular configuration. A method for the determination of a continuous and singularity-free workspace is detailed.
The geometric parameters of the system are optimized in various types of pipe-like
structures with respect to a suitable singularity index, in order to avoid singularities during the navigation across elbows. The optimization problem is formulated with an objective to maximize the reachable workspace and minimize the singularities. The objective function is also subjected to constraints such as collision avoidance, singularity avoidance, workspace continuity and contact constraints imposed between the boundaries and the wheels of the robot. A parametric variation method is used as a technique to optimize the design parameters. The optimal design parameters found are normalized
with respect to the width of the pipe-like structures and therefore the results are
generalized to be used in the development phase of the robot.
An optimal control to generate singularity-free trajectories when the robotic device has to cross a geometric singularity in a sharp 90◦ elbow is proposed. Such geometric singularity inherently leads to singularities in the Jacobian of the system, and therefore a modified device with augmented number of degrees of freedom is introduced to be able to generate non-singular trajectories.
|
12 |
Kinematics and Optimal Control of a Mobile Parallel Robot for Inspection of Pipe-like EnvironmentsSarfraz, Hassan January 2014 (has links)
The objective of this thesis is to analyze the kinematics of a mobile parallel robot with contribution that pertain to the singularity analysis, the optimization of geometric parameters and the optimal control to avoid singularities when navigating across singular
geometric configurations. The analysis of the workspace and singularities is performed in a prescribed reference workspace regions using discretization method. Serial and parallel singularities are analytically analyzed and all possible singular configurations are presented. Kinematic conditioning index is used to determine the robot’s proximity to a singular configuration. A method for the determination of a continuous and singularity-free workspace is detailed.
The geometric parameters of the system are optimized in various types of pipe-like
structures with respect to a suitable singularity index, in order to avoid singularities during the navigation across elbows. The optimization problem is formulated with an objective to maximize the reachable workspace and minimize the singularities. The objective function is also subjected to constraints such as collision avoidance, singularity avoidance, workspace continuity and contact constraints imposed between the boundaries and the wheels of the robot. A parametric variation method is used as a technique to optimize the design parameters. The optimal design parameters found are normalized
with respect to the width of the pipe-like structures and therefore the results are
generalized to be used in the development phase of the robot.
An optimal control to generate singularity-free trajectories when the robotic device has to cross a geometric singularity in a sharp 90◦ elbow is proposed. Such geometric singularity inherently leads to singularities in the Jacobian of the system, and therefore a modified device with augmented number of degrees of freedom is introduced to be able to generate non-singular trajectories.
|
13 |
Newton-Euler approach for bio-robotics locomotion dynamics : from discrete to continuous systems / Une approche Newton-Euter pour la dynamique de la locomotion bio-robotique : Des systèmes discrets vers les systèmes continusAli, Shaukat 20 December 2011 (has links)
Cette thèse propose un cadre méthodologique général et unifié adapté à l’étude de la locomotion d'une large gamme de robots, en particulier bio-inspirés. L'objectif de cette thèse est double. Tout d'abord, elle contribue à la classification des robots locomoteurs en adoptant les outils mathématiques mis en place par l'école américaine de mécanique géométrique. Deuxièmement,en profitant de la nature récursive de la formulation de Newton-Euler, elle propose de nouveaux outils efficaces sous la forme d'algorithmes aptes à résoudre les dynamiques externe directe et interne inverse de tout robot locomoteur approximable par un système multicorps mobile. Ces outils génériques peuvent aider l’ingénieur ou le chercheur dans la conception, la commande, la planification de mouvement des robots locomoteurs ou manipulateurs comprenant un grand nombre de degrés de liberté internes. Des algorithmes effectifs sont proposés pour les robots discrets ainsi que continus. Ces outils méthodologiques sont appliqués à de nombreux exemples illustratifs empruntés à la robotique bio-inspirée tels les robots serpents, chenilles et autres snake-board… / This thesis proposes a general and unified methodological framework suitable for studying the locomotion of a wide range of robots, especially bio-inspired. The objective of this thesis is twofold. First, it contributes to the classification of locomotion robots by adopting the mathematical tools developed by the American school of geometric mechanics.Secondly, by taking advantage of the recursive nature of the Newton-Euler formulation, it proposes numerous efficient tools in the form of computational algorithms capable of solving the external direct dynamics and the internal inverse dynamics of any locomotion robot considered as a mobile multi-body system. These generic tools can help the engineers or researchers in the design, control and motion planning of manipulators as well as locomotion robots with a large number of internal degrees of freedom. The efficient algorithms are proposed for discrete and continuous robots. These methodological tools are applied to numerous illustrative examples taken from the bio-inspired robotics such as snake-like robots, caterpillars, and others like snake-board, etc.
|
Page generated in 0.0325 seconds