• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Use of Piezoelectric Actuators to Effect Snap-Through Behavior of Unsymmetric Composite Laminates

Schultz, Marc Robert 23 April 2003 (has links)
As a new concept for morphing structures, the use of piezoelectric actuators to effect snap-through behavior of simple unsymmetric cross-ply composite laminates is examined. Many unsymmetric laminates have more than one stable room-temperature shape and can be snapped through from one stable shape to another. In this new concept for morphing structures, one or more piezoelectric actuators are bonded to unsymmetric laminates, and are then used to snap the laminate from one shape to another. The actuator would be used to change shape, but would not be required to maintain the shape. Using the Rayleigh-Ritz technique, several models are developed to predict the interaction between the base laminate and the actuator. In particular, the voltage (applied to the actuator) needed to snap the laminate is predicted. The NASA-LaRC Macro-Fiber Composite&174; (MFC&174;) actuator is chosen as the actuator of choice for this work. A laminate is manufactured, an actuator is bonded to the laminate, and experiments are performed. Since the agreement between the initial models and experimental results was not good, the models were revised. Good agreement between the predictions of the revised model and experiment is reached. Suggestions for future research directions are presented. / Ph. D.
2

Stability and morphing characteristics of bistable composite laminates

Tawfik, Samer Anwar 08 July 2008 (has links)
The focus of the current research is to investigate the potential of using bistable unsymmetric cross-ply laminated composites as a means for achieving structures with morphed characteristics. To this end, an investigation of the design space for laminated composites exhibiting bistable behavior is undertaken and the key parameters controlling their behavior are identified. For this purpose a nonlinear Finite Element methodology using ABAQUS code is developed to predict both the cured shapes and the stability characteristics of unsymmetric cross-ply laminates. In addition, an experimental program is developed to validate the analytically predicted results through comparison with test data. A new method is proposed for attaching piezoelectric actuators to a bistable panel in order to preserve its favorable stability characteristics as well as optimizing the actuators performance. The developed nonlinear FE methodology is extended to predict the actuation requirements of bistable panels. Actuator requirements, predicted using the nonlinear FE analysis, are found to be in agreement with the test results. The current research also explores the potential for implementing bistable panels for Uninhabited Aerial Vehicle (UAV) wing configuration. To this end, a set of bistable panels is manufactured by combining symmetric and unsymmetric balanced and unbalanced stacking sequence and their stability characteristics are predicted. A preliminary analysis of the aerodynamic characteristics of the manufactured panels is carried out and the aerodynamic benefits of manufactured bistable panel are noted.

Page generated in 0.0407 seconds