• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control of Manganese Dioxide Particles Resulting From in Situ Chemical Oxidation Using Permanganate

Crimi, Michelle, Ko, Saebom 01 February 2009 (has links)
In situ chemical oxidation using permanganate is an approach to organic contaminant site remediation. Manganese dioxide particles are products of permanganate reactions. These particles have the potential to deposit in the subsurface and impact the flow-regime in/around permanganate injection, including the well screen, filter pack, and the surrounding subsurface formation. Control of these particles can allow for improved oxidant injection and transport and contact between the oxidant and contaminants of concern. The goals of this research were to determine if MnO2 can be stabilized/controlled in an aqueous phase, and to determine the dependence of particle stabilization on groundwater characteristics. Bench-scale experiments were conducted to study the ability of four stabilization aids (sodium hexametaphosphate (HMP), Dowfax 8390, xanthan gum, and gum arabic) in maintaining particles suspended in solution under varied reaction conditions and time. Variations included particle and stabilization aid concentrations, ionic content, and pH. HMP demonstrated the most promising results, as compared to xanthan gum, gum arabic, and Dowfax 8390 based on results of spectrophotometric studies of particle behavior, particle filtration, and optical measurements of particle size and zeta potential. HMP inhibited particle settling, provided for greater particle stability, and resulted in particles of a smaller average size over the range of experimental conditions evaluated compared to results for systems that did not include HMP. Additionally, HMP did not react unfavorably with permanganate. These results indicate that the inclusion of HMP in a permanganate oxidation system improves conditions that may facilitate particle transport.
2

Effects of Soluble Calcium-to-Protein Ratio on Age Gelation of Ultra

Ryue, Je Hong 01 May 1994 (has links)
Reverse osmosis (RO) and ultrafiltration (UF) retentates were ultra-high temperature (UHT) processed and compared for storage life at room temperature. Viscosity studies indicated that UHT-treated, RO retentate delayed age gelation longer than UF retentate at the same total solids level (26% TS). When compared at 6.4% protein level (2x RO vs 2.7x UF where x=ratio of the feed volume to concentrate volume), the storage life for both RO and UF retentates was about 6 to 8 months. Sodium hexametaphosphate (SHMP) and disodium phosphate (DSP) at 1, 3, 5, 10, and 20 mM concentrations were incorporated prior to UHT processing of each sample to improve the shelf life. SHMP at 1 and 3 mM concentrations was effective in delaying age gelation, whereas all levels of DSP accelerated gelation. However, SHMP accelerated age gelation at concentrations of 10 and 20 mM. SHMP at 1 mM in RO retentate was more effective in delaying age gelation than the same SHMP level in two UF samples (22 and 26% TS). Analysis showed that RO/UHT-treated samples had higher soluble calcium and ionic calcium than did UF/UHT-treated samples. The coefficient of determination (R2) was .80 between soluble calcium-to-protein ratio and shelf life.
3

Les effets de revêtements de surface sur la dissolution et la bioaccumulation de nanoparticules d'oxyde de zinc par l'algue unicellulaire, C. reinhardtii

Merdzan, Vladimir 12 1900 (has links)
Au cours de la dernière décennie, les nanoparticules ont connu un essor sans précédent dans plusieurs domaines. On peut retrouver ces nanoparticules dans des secteurs aussi variés tels que la médecine, l’électronique, les écrans solaires, les cosmétiques et les plastiques, pour ne nommer que ceux-là. Cette utilisation massive a eu un effet pervers sur l’environnement, sachant qu’une grande partie de ces produits se sont retrouvés inévitablement dans les milieux naturels. Plusieurs études révèlent qu’autant la présence des nanoparticules que leurs produits de dissolution sont à prendre en considération lorsque des travaux toxicologiques ou le devenir de ces matériaux sont étudiés. Il est désormais clair que les propriétés de surface de ces nanoparticules jouent un rôle central sur leur comportement dans les solutions aqueuses; que ce soit les interactions avec des organismes ou entre les particules elles-mêmes. Afin d’évaluer le devenir de nZnO, une étude sur la dissolution ainsi que la bioaccumulation a été réalisée avec l’algue modèle Chlamydomonas reinhardtii en présence de nanoparticules ayant différents enrobages. Les nanoparticules d’oxyde de zinc suivantes ont été étudiées : (i) nZnO sans enrobage (nZnO); (ii) nZnO avec enrobage d’acide polyacrylique (nZnO-PAA) et (iii) nZnO avec enrobage d’hexamétaphosphate de sodium (nZnO-HMP). La dissolution était mesurée à l’aide de trois techniques : ultrafiltration par centrifugation (CU); technique potentiométrique (scanned stripping chronopotentiometry, SSCP) et spectrométrie de masse – plasma à couplage inductif couplé à une résine échangeuse d’ions (resin-based inductively coupled plasma-mass spectrometry, resin-based ICP-MS). Les résultats obtenus démontrent une grande tendance à la dissolution pour le nZnO (presque totale) tandis que pour le nZnO-PAA et le nZnO-HMP, la dissolution est dépendante de la nature de l’enrobage le composant. Pour la bioaccumulation sur l’algue testée, les données montrent une grande dépendance au zinc libre issu de la dissolution pour nZnO et nZnO-PAA. À l’inverse, le nZnO-HMP démontre une bioaccumulation plus élevée par comparaison aux mêmes concentrations d’expositions du zinc libre, expliquée par la stimulation de l’internalisation du zinc provoqué par la présence de phosphate constituant l’enrobage de nZnO-HMP. / Over the last decade, the use of nanoparticles (NP) has been increasing exponentially in numerous sectors, leading to their massive release into the environment. For example, zinc oxide nanoparticles (nZnO) can be found in areas such as medicine, electronics, sunscreens, cosmetics and plastics. Concerns have therefore been raised about the impacts of the NP on the natural environment, as well as their consequences for humans. Multiple studies reveal that not only the NP but also their dissolution products may have impacts on environmental systems. It is well understood that surface properties of engineered nanoparticles in aqueous solution play a pivotal role in nanoparticle behavior, including their interactions with organisms. Therefore, in order to assess the behavior of nZnO, this study focuses on their dissolution and evaluates the bioaccumulation of 3 nanoparticles with different surface stabilizations by the freshwater algae Chlamydomonas reinhardtii. The following NP were studied: (i) bare nZnO, (ii) polyacrylic acid coated (nZnO-PAA) and (iii) sodium hexametaphosphate coated (nZnO-HMP). Three different techniques were used to quantify dissolution of the nZnO: centrifugal ultrafiltration (CU), scanned stripping chronopotentiometry (SSCP) and resin-based inductively coupled plasma-mass spectrometry (resin-based ICP-MS). The results reveal a high dissolution of the bare nZnO (nearly total) while the dissolution of the polyacrylate coated and hexamataphosphate coated nZnO were highly dependent on the nature of the stabilizer. As a consequence, bioaccumulation in model algae C. reinhardtii was strongly related to the release of free zinc in the bare nZnO and the nZnO-PAA. On the other hand, algae exposed to nZnO-HMP appeared to be stimulated by the phosphate coating, leading to higher bioaccumulation than for the free zinc, once again demonstrating the importance of the nature of the stabilizer.
4

Avaliação in vitro e in situ do potencial erosivo do suco de laranja modificado por cálcio e alguns polímeros alimentares / In vitro and in situ evaluation of the erosive potential of the orange juice modified with calcium and some food-approved polimers

Scaramucci, Taís 10 June 2011 (has links)
O objetivo deste trabalho foi avaliar in vitro e in situ o potencial erosivo do suco de laranja modificado por cálcio e alguns polímeros alimentares. Este estudo foi dividido em quatro fases. Na primeira, as seguintes substâncias: lactato de cálcio (Ca), goma xantana (XG), hexametafosfato de sódio (HMP), tripolifosfato de sódio (STP), pirofosfato de sódio (PP) e suas combinações, foram adicionadas a um suco de laranja, disponível comercialmente, criando 15 sucos modificados. O suco sem aditivos foi utilizado como controle negativo (C-), e um suco de laranja modificado com cálcio (disponível comercialmente), como controle positivo (C+). Os sucos tiveram o seu potencial erosivo avaliado com o método do pH-stat. A variável resposta foi o volume de titulador necessário para manter o pH dos sucos nos valores iniciais. Após, seis sucos foram selecionados e testados na segunda fase, com um modelo de ciclagem de erosão-remineralização. Na terceira fase, os episódios de erosão e de remineralização foram estudados independentemente. A variável resposta para essas duas fases foi a microdureza de superfície (MDS) para esmalte, e a perfilometria ótica, para esmalte e dentina. Na quarta fase, os sucos Ca, Ca+HMP e HMP, mais os controles, foram testados com um modelo de erosão in situ, crossover, cego, de 5 fases, envolvendo 10 voluntários. Em cada fase, os voluntários inseriam aparelhos palatinos contendo espécimes de esmalte na boca e, após 5min, realizavam os desafios erosivos nos tempos experimentais de 0 (controle), 10, 20 e 30min. Dois espécimes eram aleatoriamente removidos dos aparelhos, após cada tempo. A variável resposta foi a alteração da microdureza de superfície (em %). Antes dos procedimentos clínicos, em cada fase, os voluntários realizaram um teste cego de sabor, onde o suco modificado designado a aquela fase foi comparado cegamente com C-. Na primeira fase, todos os aditivos foram capazes de reduzir o potencial erosivo do suco, com exceção da adição de XG isoladamente. Na segunda fase, não houve perda de estrutura de esmalte detectável quando Ca, HMP e Ca+HMP foram adicionados ao suco; XG, STP e PP apresentaram uma perda de esmalte similar ao grupo C-. Ca+HMP apresentaram a menor redução da MDS, seguido por Ca; todos os outros grupos apresentaram uma redução da MDS similar ao grupo C-. Para dentina, somente Ca+HMP apresentou uma redução na perda de estrutura. Na terceira fase, Ca, HMP e Ca+HMP protegeram contra erosão e nenhum dos compostos interferiu com o processo de remineralização. Na quarta fase, Ca e Ca+HMP reduziram a erosão, sem diferenças significantes entre esses grupos; o HMP não apresentou efeito protetor. 5/10 voluntários notaram uma diferença no sabor de C+, 4/10 para Ca e 2/10 para C-. Conclui-se que, in vitro, tanto o HMP, quanto o Ca, nas concentrações testadas, reduziram a erosão causada pelo suco em esmalte e a combinação desses aditivos aumentou seus efeitos protetores. Para dentina, apenas a combinação Ca+HMP reduziu a erosão. In situ, Ca reduziu a erosão provocada pelo suco, porém, alterações no sabor foram notadas por alguns voluntários. HMP não apresentou efeito protetor. / The aim of this study was to evaluate in vitro and in situ the erosive potential of the orange juice modified with calcium and some food-approved polymers. This study was divided into four fases. In the first, the following substances: calcium lactate (Ca), xanthan gum (XG), sodium hexametaphosphate (HMP), sodium trypoliphosphate (STP), sodium pyrophosphate (PP) and some of their combinations were added to a commercially available orange juice, creating 15 modified juices. The juice without additives was used as a negative control (C-) and a commercially available calcium-modified juice as positive control (C+). These juices were tested for erosive potential using pH-stat. The response variable was the volume of titrant needed to maintain the pH of the juices in their baseline values. After, six selected juices were tested in the second phase with an erosion-remineralization cycling model. In the third phase, the erosion and remineralization episodes were tested independently. The reponse variable for these phases was surface microhardness for enamel and optical perfilometry for enamel and dentin. In the fourth phase, the juices Ca, Ca+HMP and HMP, plus the controls were tested with an erosion in situ model, consisting of a 5-phase, single blind crossover clinical trial involving 10 subjects. In each phase, subjects inserted custom-made palatal appliances containing enamel specimens in the mouth and, after 5 min equilibration period, performed erosive challenges for total of 0 (control), 10, 20, and 30 min. Two specimens were randomly removed from the appliances, after each challenge period. The reponse variable was the percentage of surface microhardness change. Before the procedures, in each phase, the subjects performed a taste test, where the modified juice assigned to that phase was blindly compared to C-. In first phase, all the additives were able to reduce the erosive potential of the juice, except the addition of XG alone. In the second phase, no detectable enamel loss was observed when Ca, HMP and Ca+HMP were added to the juice; XG, STP and PP had enamel loss similar to C-. Ca+HMP showed the lowest reduction in the surface microhardness, followed by Ca;all the other groups presented a reduction in the surface microhardness similar to C-. For dentin, only Ca+HMP reduced surface loss. In the third phase, Ca, HMP and Ca+HMP protected against erosion; and none of the tested compounds seemed to interfere with the remineralization process. In the fourth phase, Ca and Ca+HMP reduced erosion, with no difference between them. HMP did not show any protective effect. 5/10 subjects noticed a difference in the taste of C+; 4/10 for Ca; and 2 /10 for C-. In conclusion, in vitro, HMP and Ca, in the concentrations tested, reduced erosion on enamel and this effect was enhanced by their combination. For dentin, only the combination Ca+HMP caused a significant reduction. In situ, Ca reduced the erosion caused by the juice; however, taste changes were noticed by some volunteers. HMP did not show any protective effect.
5

Avaliação in vitro e in situ do potencial erosivo do suco de laranja modificado por cálcio e alguns polímeros alimentares / In vitro and in situ evaluation of the erosive potential of the orange juice modified with calcium and some food-approved polimers

Taís Scaramucci 10 June 2011 (has links)
O objetivo deste trabalho foi avaliar in vitro e in situ o potencial erosivo do suco de laranja modificado por cálcio e alguns polímeros alimentares. Este estudo foi dividido em quatro fases. Na primeira, as seguintes substâncias: lactato de cálcio (Ca), goma xantana (XG), hexametafosfato de sódio (HMP), tripolifosfato de sódio (STP), pirofosfato de sódio (PP) e suas combinações, foram adicionadas a um suco de laranja, disponível comercialmente, criando 15 sucos modificados. O suco sem aditivos foi utilizado como controle negativo (C-), e um suco de laranja modificado com cálcio (disponível comercialmente), como controle positivo (C+). Os sucos tiveram o seu potencial erosivo avaliado com o método do pH-stat. A variável resposta foi o volume de titulador necessário para manter o pH dos sucos nos valores iniciais. Após, seis sucos foram selecionados e testados na segunda fase, com um modelo de ciclagem de erosão-remineralização. Na terceira fase, os episódios de erosão e de remineralização foram estudados independentemente. A variável resposta para essas duas fases foi a microdureza de superfície (MDS) para esmalte, e a perfilometria ótica, para esmalte e dentina. Na quarta fase, os sucos Ca, Ca+HMP e HMP, mais os controles, foram testados com um modelo de erosão in situ, crossover, cego, de 5 fases, envolvendo 10 voluntários. Em cada fase, os voluntários inseriam aparelhos palatinos contendo espécimes de esmalte na boca e, após 5min, realizavam os desafios erosivos nos tempos experimentais de 0 (controle), 10, 20 e 30min. Dois espécimes eram aleatoriamente removidos dos aparelhos, após cada tempo. A variável resposta foi a alteração da microdureza de superfície (em %). Antes dos procedimentos clínicos, em cada fase, os voluntários realizaram um teste cego de sabor, onde o suco modificado designado a aquela fase foi comparado cegamente com C-. Na primeira fase, todos os aditivos foram capazes de reduzir o potencial erosivo do suco, com exceção da adição de XG isoladamente. Na segunda fase, não houve perda de estrutura de esmalte detectável quando Ca, HMP e Ca+HMP foram adicionados ao suco; XG, STP e PP apresentaram uma perda de esmalte similar ao grupo C-. Ca+HMP apresentaram a menor redução da MDS, seguido por Ca; todos os outros grupos apresentaram uma redução da MDS similar ao grupo C-. Para dentina, somente Ca+HMP apresentou uma redução na perda de estrutura. Na terceira fase, Ca, HMP e Ca+HMP protegeram contra erosão e nenhum dos compostos interferiu com o processo de remineralização. Na quarta fase, Ca e Ca+HMP reduziram a erosão, sem diferenças significantes entre esses grupos; o HMP não apresentou efeito protetor. 5/10 voluntários notaram uma diferença no sabor de C+, 4/10 para Ca e 2/10 para C-. Conclui-se que, in vitro, tanto o HMP, quanto o Ca, nas concentrações testadas, reduziram a erosão causada pelo suco em esmalte e a combinação desses aditivos aumentou seus efeitos protetores. Para dentina, apenas a combinação Ca+HMP reduziu a erosão. In situ, Ca reduziu a erosão provocada pelo suco, porém, alterações no sabor foram notadas por alguns voluntários. HMP não apresentou efeito protetor. / The aim of this study was to evaluate in vitro and in situ the erosive potential of the orange juice modified with calcium and some food-approved polymers. This study was divided into four fases. In the first, the following substances: calcium lactate (Ca), xanthan gum (XG), sodium hexametaphosphate (HMP), sodium trypoliphosphate (STP), sodium pyrophosphate (PP) and some of their combinations were added to a commercially available orange juice, creating 15 modified juices. The juice without additives was used as a negative control (C-) and a commercially available calcium-modified juice as positive control (C+). These juices were tested for erosive potential using pH-stat. The response variable was the volume of titrant needed to maintain the pH of the juices in their baseline values. After, six selected juices were tested in the second phase with an erosion-remineralization cycling model. In the third phase, the erosion and remineralization episodes were tested independently. The reponse variable for these phases was surface microhardness for enamel and optical perfilometry for enamel and dentin. In the fourth phase, the juices Ca, Ca+HMP and HMP, plus the controls were tested with an erosion in situ model, consisting of a 5-phase, single blind crossover clinical trial involving 10 subjects. In each phase, subjects inserted custom-made palatal appliances containing enamel specimens in the mouth and, after 5 min equilibration period, performed erosive challenges for total of 0 (control), 10, 20, and 30 min. Two specimens were randomly removed from the appliances, after each challenge period. The reponse variable was the percentage of surface microhardness change. Before the procedures, in each phase, the subjects performed a taste test, where the modified juice assigned to that phase was blindly compared to C-. In first phase, all the additives were able to reduce the erosive potential of the juice, except the addition of XG alone. In the second phase, no detectable enamel loss was observed when Ca, HMP and Ca+HMP were added to the juice; XG, STP and PP had enamel loss similar to C-. Ca+HMP showed the lowest reduction in the surface microhardness, followed by Ca;all the other groups presented a reduction in the surface microhardness similar to C-. For dentin, only Ca+HMP reduced surface loss. In the third phase, Ca, HMP and Ca+HMP protected against erosion; and none of the tested compounds seemed to interfere with the remineralization process. In the fourth phase, Ca and Ca+HMP reduced erosion, with no difference between them. HMP did not show any protective effect. 5/10 subjects noticed a difference in the taste of C+; 4/10 for Ca; and 2 /10 for C-. In conclusion, in vitro, HMP and Ca, in the concentrations tested, reduced erosion on enamel and this effect was enhanced by their combination. For dentin, only the combination Ca+HMP caused a significant reduction. In situ, Ca reduced the erosion caused by the juice; however, taste changes were noticed by some volunteers. HMP did not show any protective effect.

Page generated in 0.0618 seconds