Spelling suggestions: "subject:"sodiumion battery"" "subject:"sodium.on battery""
1 |
Nanostructured anode materials for Li-ion and Na-ion batteriesLin, Yong-Mao 16 October 2013 (has links)
The demand for electrical energy storage has increased tremendously in recent years, especially in the applications of portable electronic devices, transportation and renewable energy. The performances of lithium-ion and sodium-ion batteries depend on their electrode materials. In commercial Li-ion batteries with graphite anodes the intercalation potential of lithium in graphite is close to the reversible Li/Li⁺ half-cell potential. The proximity of the potentials can result in unintended electroplating of metallic instead of intercalation of lithium in the graphite anode and frequently leads to internal shorting and overheating, which constitute unacceptable hazards, especially when the batteries are large, as they are in cars and airplanes. Moreover, graphite cannot be readily used as the anode material of Na-ion batteries, because electroplating of metallic sodium on graphite is kinetically favored over sodium intercalation in graphite. This dissertation examines safer Li-ion and Na-ion battery anode materials. / text
|
2 |
Metal Organic Composites Derived Tin Dioxide/C Nanoparticles For Sodium-Ion BatteryLiang, Wenfeng 10 June 2016 (has links)
No description available.
|
3 |
Chemical modification of nanocolumnar semiconductor electrodes for enhanced performance as lithium and sodium-ion battery anode materialsAbel, Paul Robert 24 October 2014 (has links)
Chemical Engineering / The successful commercialization of lithium-ion batteries is responsible for the ubiquity of personal electronics. The continued development of battery technology, as well as its application to new emerging markets such as electric vehicles, is dependent on developing safer, higher energy density, and cheaper electrode materials and battery chemistries. The focus of this dissertation is on identifying, characterizing and optimizing new materials for lithium- and sodium-ion batteries. Batteries are incredibly complex engineered systems with each electrode composed of conductive additive and polymeric binder in addition to the active material. All of these components must work together for the electrode system to function properly. In this work, glancing angle deposition (GLAD) and reactive ballistic deposition (RBD) are employed to grow thin films of novel materials with reproducible morphology for use as battery electrodes. The use of these thin film electrodes eliminated the need for conductive additives and polymer binders allowing for the active materials themselves to be studied rather than the whole electrode system. Two techniques are employed to modify the chemical properties of the electrode materials grown by RBD and GLAD: Alloying (Si-Ge alloys for Li-ion batteries and Sn-Ge alloys for Na-ion batteries) and partial chalcogenation (partial oxidation of silicon, and partial sulfidation and selenidation of germanium for Li-ion batteries). Both of these techniques are successfully employed to enhance the electrochemical properties of the materials presented in this dissertation. / text
|
4 |
Synthesis, Electrochemistry and Solid-Solution Behaviour of Energy Storage Materials Based on Natural MineralsEllis, Brian January 2013 (has links)
Polyanionic compounds have been heavily investigated as possible electrode materials in lithium- and sodium-ion batteries. Chief among these is lithium iron phosphate (LiFePO4) which adopts the olivine structure and has a potential of 3.5 V vs. Li/Li+. Many aspects of ion transport, solid-solution behaviour and their relation to particle size in olivine systems are not entirely understood. Morphology, unit cell parameters, purity and electrochemical performance of prepared LiFePO4 powders were greatly affected by the synthetic conditions. Partially delithiated olivines were heated and studied by Mössbauer spectroscopy and solid-solution behaviour by electron delocalization was observed. The onset of this phenomenon was around 470-500 K in bulk material but in nanocrystalline powders, the onset of a solid solution was observed around 420 K. The isostructural manganese member of this family (LiMnPO4) was also prepared hydrothermally. Owing to the thermal instability of MnPO4, partially delithiated LiMnPO4 did not display any solid-solution behaviour.
Phosphates based on the tavorite (LiFePO4OH) structure include LiVPO4F and LiFePO4(OH)1-xFx which may be prepared hydrothermally or by solid state routes. LiVPO4F is a high capacity (2 electrons/transition metal) electrode material and the structures of the fully reduced Li2VPO4F and fully oxidized VPO4F were ascertained. Owing to structural nuances, the potential of the iron tavorites are much lower than that of the olivines. The structure of Li2FePO4F was determined by a combined X-ray and neutron diffraction analysis.
The electrochemical properties of very few phosphates based on sodium are known. A novel fluorophosphate, Na2FePO4F, was prepared by both solid state and hydrothermal methods. This material exhibited two two-phase plateau regions on cycling in a half cell versus sodium but displayed solid-solution behaviour when cycled versus lithium, where the average potential was 3.3 V. On successive cycling versus Li a decrease in the sodium content of the active material was observed, which implied an ion-exchange reaction occurred between the material and the lithium electrolyte.
Studies of polyanionic materials as positive electrode materials in alkali metal-ion batteries show that some of these materials, namely those which contain iron, hold the most promise in replacing battery technologies currently available.
|
5 |
Synthesis, Electrochemistry and Solid-Solution Behaviour of Energy Storage Materials Based on Natural MineralsEllis, Brian January 2013 (has links)
Polyanionic compounds have been heavily investigated as possible electrode materials in lithium- and sodium-ion batteries. Chief among these is lithium iron phosphate (LiFePO4) which adopts the olivine structure and has a potential of 3.5 V vs. Li/Li+. Many aspects of ion transport, solid-solution behaviour and their relation to particle size in olivine systems are not entirely understood. Morphology, unit cell parameters, purity and electrochemical performance of prepared LiFePO4 powders were greatly affected by the synthetic conditions. Partially delithiated olivines were heated and studied by Mössbauer spectroscopy and solid-solution behaviour by electron delocalization was observed. The onset of this phenomenon was around 470-500 K in bulk material but in nanocrystalline powders, the onset of a solid solution was observed around 420 K. The isostructural manganese member of this family (LiMnPO4) was also prepared hydrothermally. Owing to the thermal instability of MnPO4, partially delithiated LiMnPO4 did not display any solid-solution behaviour.
Phosphates based on the tavorite (LiFePO4OH) structure include LiVPO4F and LiFePO4(OH)1-xFx which may be prepared hydrothermally or by solid state routes. LiVPO4F is a high capacity (2 electrons/transition metal) electrode material and the structures of the fully reduced Li2VPO4F and fully oxidized VPO4F were ascertained. Owing to structural nuances, the potential of the iron tavorites are much lower than that of the olivines. The structure of Li2FePO4F was determined by a combined X-ray and neutron diffraction analysis.
The electrochemical properties of very few phosphates based on sodium are known. A novel fluorophosphate, Na2FePO4F, was prepared by both solid state and hydrothermal methods. This material exhibited two two-phase plateau regions on cycling in a half cell versus sodium but displayed solid-solution behaviour when cycled versus lithium, where the average potential was 3.3 V. On successive cycling versus Li a decrease in the sodium content of the active material was observed, which implied an ion-exchange reaction occurred between the material and the lithium electrolyte.
Studies of polyanionic materials as positive electrode materials in alkali metal-ion batteries show that some of these materials, namely those which contain iron, hold the most promise in replacing battery technologies currently available.
|
6 |
Development of Anode Materials Using Electrochemical Atomic Layer Deposition (E-ALD) for Energy ApplicationsXaba, Nqobile January 2018 (has links)
Philosophiae Doctor - PhD (Chemistry) / Nanomaterials have been found to undeniably possess superior properties than bulk structures
across many fields of study including natural science, medicine, materials science, electronics
etc. The study of nano-sized structures has the ability to address the current world crisis in
energy demand and climate change. The development of materials that have various
applications will allow for quick and cost effective solutions. Nanomaterials of Sn and Bi are
the core of the electronic industry for their use in micro packaging components. These
nanomaterials are also used as electrocatalysts in fuel cells and carbon dioxide conversion,
and as electrodes for rechargeable sodium ion batteries. There are various methods used to
make these nanostructures including solid state methods, hydrothermal methods, sputtering,
and vacuum deposition techniques. These methods lack the ability to control the structure of
material at an atomic level to fine tune the properties of the final product.
This study aims to use E-ALD technique to synthesis thin films of Sn and Bi for various
energy applications, and reports the use of E-ALD in battery applications for the first time.
Thin films were synthesised by developing a deposition sequence and optimising this
deposition sequence by varying deposition parameters. These parameters include deposition
potential, and concentration of precursor solution. The thin films were characterised using
cyclic voltammetry, linear sweep voltammetry, chronoamperometry for electrochemical
activity. These were also characterised using scanning electron microscope for morphology,
x-ray diffraction for crystal phases, energy dispersive spectroscopy for elemental mapping,
and focused ion beam scanning electron microscope for thickness. The elemental content was
analysed using electron probe micro analysis and inductively coupled plasma mass
spectrometry. The electrochemical impedance charge and discharge profile were used for
electrochemical battery tests.
|
7 |
Mixed Polyanion and Clathrate Materials as Novel Materials for Lithium-ion and Sodium-ion BatteriesJanuary 2017 (has links)
abstract: This work describes the investigation of novel cathode and anode materials. Specifically, several mixed polyanion compounds were evaluated as cathodes for Li and Na-ion batteries. Clathrate compounds composed of silicon or germanium arranged in cage-like structures were studied as anodes for Li-ion batteries.
Nanostructured Cu4(OH)6SO4 (brochantite) platelets were synthesized using polymer-assisted titration and microwave-assisted hydrothermal methods. These nanostructures exhibited a capacity of 474 mAh/g corresponding to the full utilization of the copper redox in an conversion reaction. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) studies were preformed to understand the mechanism and structural changes.
A microwave hydrothermal synthesis was developed to prepare a series compounds based on jarosite, AM3(SO4)2(OH)6 (A = K, Na; M = Fe, V). Both the morphology and electrochemical properties showed a compositional dependence. At potentials >1.5 V vs. Li/Li+, an insertion-type reaction was observed in Na,Fe-jarosite but not in K,Fe-jarosite. Reversible insertion-type reactions were observed in both vanadium jarosites between 1 – 4 V with capacities around 40 - 60 mAh/g. Below 1 V vs. Li/Li+, all four jarosite compounds underwent conversion reactions with capacities ~500 mAh/g for the Fe-jarosites.
The electrochemical properties of hydrogen titanium phosphate sulfate, H0.4Ti2(PO4)2.4(SO4)0.6 (HTPS), a new mixed polyanion material with NASICON structure was reported. A capacity of 148 mAh/g corresponding to2 Li+ insertion per formula unit was observed. XRD and XPS were used to characterize the HTPS before and after cycling and to identify the lithium sites. Evaluation of the HTPS in Na-ion cell was also performed, and a discharge capacity of 93 mAh/g was observed.
A systematic investigation of the role of the processing steps, such as ball-milling and acid/base etching, on the electrochemical properties of a silicon clathrate compound with nominal composition of Ba8Al16Si30 was performed. According to the transmission electron microscope (TEM), XPS, and electrochemical analysis, very few Li atoms can be electrochemically inserted, but the introduction of disorder through ball-milling resulted in higher capacity, while the oxidation layer made by the acid/base treatment prevented the reation. The electrochemical property of germanium clathrate was also investigated, unlike the silicon clathrate, the germanium one underwent a conversion reaction. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2017
|
8 |
Hybrid Two-Dimensional Nanostructures For Battery ApplicationsBayhan, Zahra 05 1900 (has links)
The increased deployment for renewable energy sources to mitigate the climate crisis has accelerated the need to develop efficient energy storage devices. Batteries are at the top of the list of the most in-demand devices in the current decade. Nowadays, research is in full swing to develop a battery that meets the needs of today’s renewable energy systems, which are intermittent by nature. Within the framework of improving the performance of batteries, there are parameters in the composition of the battery that play an important role in its performance: electrode materials, electrolytes, separators, and other factors. The key to battery development is the manufacture of electrode materials with optimal properties. Two-dimensional (2D) materials have led to advances in this field, firstly, using graphite as the anode in lithium-ion batteries (LIBs). However, when using the standard graphite as the anode for sodium-ion batteries (NIBs), the large ionic size and energetic instability of Na+ limit intercalation, resulting in a low storage capacity. Therefore, other 2D materials with large interlayer spacing need to be identified for use as electrodes.
In this dissertation, our approach is focus on optimizing anode electrode materials by in situ conversion of 2D materials to obtain hybrid materials. These hybrids materials will synergistically improve the performance of LIBs and NIBs by combining the advantages of individual 2D materials. Starting with converted Ti0.87O2 nanosheets to the TiO2/TiS2 hybrid nanosheets. Then, taking advantage of the properties of MXene, we developed hybrid electrodes based on MXenes by converted V2CTx MXene into V2S3@C@V2S3 heterostructures. Finally, we boosted the redox kinetics and cycling stability of Mo2CTx MXene by using a laser scribing process to construct a multiple-scale Mo2CTx/Mo2C-carbon (LS-Mo2CTx) hybrid material.
|
9 |
Solid-State and Diffusional Nuclear Magnetic Resonance Investigations of Oxidatively Stable Materials for Sodium Batteries / Development of Oxidatively Stable Battery MaterialsFranko, Christopher J. January 2022 (has links)
This thesis focuses on the development of oxidatively stable cathode and electrolyte materials for sodium-based battery systems. This is primarily achieved through the use of solid-state nuclear magnetic resonance (ssNMR) and pulsed-field gradient (PFG) NMR spectroscopy.
ssNMR is used to diagnose the primarily failure mode of the NaOB. It is found through a combined 23Na and 19F study that the main discharge product of the cell, NaO2, oxidizes both the carbon and polyvinylidene fluoride (PVDF) binder of the cathode to produce parasitic Na2CO3 and NaF. In a subsequent study, Ti4O7-coated carbon paper cathodes are implemented in an attempt to stabilize NaO2. The 23Na triple quantum magic angle spinning (3QMAS) and 1H to 23Na dipolar heteronuclear multiple quantum correlation (23Na{1H} D-HMQC) experiments are used to diagnose the failure modes of carbon-coated, and Ti4O7-coated cathodes. It is found that electrochemically formed NaO2 is significantly more stable in Ti4O7-coated cathodes, leading to longer lifetime NaOBs.
Oxidatively stable electrolyte materials are also examined. Lithium and sodium bis(trifluoromethansulfonyl)imide (TFSI) in adiponitrile (ADN) electrolytes exhibit extreme oxidative resistance, but are unusable in modern cells due to Al corrosion by TFSI, and spontaneous ADN degradation by Li and Na metal. PFG NMR is used to investigate the transport properties of LiTFSI in ADN as a function of LiTFSI concentration. By measuring the diffusion coefficient of Li+ and TFSI as a function of diffusion time (Δ), diffusional behaviour is encoded as a function of length scale to study the short- and long-range solution structure of the electrolyte. It is found that at high concentrations, LiTFSI in ADN transports Li+ primarily through an ion-hopping mechanism, in contrast to the typical vehicular mechanism observed at low concentrations. This suggests significant structural changes in solution at high concentrations.
The NaTFSI in ADN analogue is examined for its electrochemical properties in Na-ion and Na-O2 batteries. It is found that the oxidative resistance of ADN to Na metal is significantly increased at high concentrations, leading to reversible Na deposition and dissolution in cyclic voltammetry (CV) experiments. Linear sweep voltammetry (LSV) and chronoamperometry (CA) experiments on Al current collectors show that Al corrosion by TFSI is similarly suppressed at high concentration. This culminates in high concentration NaTFSI in ADN being able to reversibly intercalate Na3V2(PO4)2F3 (NVPF) cathodes in SIB half-cells for multiple cycles.
The knowledge gained from exploring oxidatively stable cathode and electrolyte materials can be used in tandem for the development of a longer lifetime, more oxidatively stable, NaOB in the future. / Thesis / Doctor of Philosophy (PhD) / The continued development of rechargeable batteries is paramount in reducing the world’s reliance on fossil fuels, as they allow for the storage of electrical energy produced by renewable sources. This work primarily examines sodium-based batteries systems, such as the sodium-oxygen battery (NaOB) and sodium-ion battery (SIB), which are possible alternatives to the currently used lithium-ion battery (LIB) system.
In order to produce energy, NaOBs produce sodium superoxide (NaO2) during the discharge process, which is formed on the carbon cathode. However, NaO2 is inherently unstable to carbon materials, causing degradation of the battery overtime. Ti4O7 is investigated as a stable coating material in NaOBs, used to coat the carbon cathode to make the system more stable to NaO2 degradation. The degradation processes in NaOBs are characterized by solid state nuclear magnetic resonance (ssNMR) spectroscopy, which uses strong superconducting magnets to probe the magnetic properties of, and consequently identify, the chemical species formed within the battery. It is found that the addition of the Ti4O7 coating inhibits NaO2 degradation, producing longer lifetime NaOBs.
Subsequently, both Li-bis(trifluoromethansulfonyl)imide (LiTFSI), and NaTFSI, in adiponitrile (ADN) electrolytes are examined for their use in LIBs and SIBs, respectively. Electrolytes facilitate stable ion transport within the cell, and ADN electrolytes specifically allow for the use of higher voltage cathode materials, which can result in a higher energy density battery. The transport properties of LiTFSI in ADN electrolytes are studied by a pulsed-field gradient (PFG) NMR technique, that allows for the measurement of the rate of ion transport in the electrolyte. It is found that the mechanism of ion transport significantly depends on electrolyte concentration, which suggests significant changes to the electrolyte solution structure at high concentration.
The electrochemical ramifications of this are studied for the NaTFSI in ADN electrolyte in SIBs. It is found that the electrolyte becomes substantially more stable at high concentrations, leading to more favourable charging and discharging behaviours when tested in SIBs.
The work presented in this thesis illustrates the development of more stable, longer lifetime, batteries over a number of cell chemistries, using a variety of NMR and electrochemical characterization techniques.
|
10 |
Recycling of Prussian WhiteMattsson, Agnes-Matilda, Eriksson, Towa, Löwnertz, Caroline, Holmbom, Marielle January 2021 (has links)
The aim of this project was to find a recycling route for Prussian white. During the experimental part, one recycling method was tested using sodium hydroxide and from this a method for re-synthesis of Prussian white was conducted as well as a method for re-crystallisation of sodium ferrocyanide. The method that proved most successful was the re-crystallisation of sodium ferrocyanide. Furthermore, the conditions needed to conduct a proper re-synthesis of Prussian white was not available during this research. Therefore, it was not possible to produce Prussian white of the right structure. The analysis was performed through XRD analysis and it was concluded that it is possible to re-crystallise sodium ferrocyanide from Prussian white.
|
Page generated in 0.0747 seconds