• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 403
  • 130
  • 84
  • 31
  • 31
  • 31
  • 31
  • 31
  • 30
  • 24
  • 9
  • 8
  • 8
  • 6
  • 6
  • Tagged with
  • 853
  • 853
  • 145
  • 114
  • 79
  • 77
  • 76
  • 71
  • 70
  • 67
  • 62
  • 62
  • 61
  • 59
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Soil moisture and related edaphic properties of street-tree pits in urban Hong Kong

Ng, Yuk-yin, Judith., 吳鈺賢. January 1999 (has links)
published_or_final_version / Geography and Geology / Master / Master of Philosophy
292

Stochastic approach of modelling large-scale moisture transport in partially saturated porous media

Dissanayake, Pujitha Bandara Gamagedera. January 1999 (has links)
published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
293

MOISTURE MOVEMENT FROM A POINT SOURCE.

ROTH, ROBERT LEROY. January 1983 (has links)
Trickle irrigation is the latest technique to efficiently apply irrigation water to plants. It is selected over other irrigation systems when water is scarce or expensive, the soils are very permeable or cannot be leveled, and crop values are high or require specialized cultural practices. Trickle irrigation is also very popular in commercial landscaping because of its ease for automation. Plant growth is optimized when the soil water content is near field capacity so that adequate water and oxygen are available to the plant root. Thus, the knowledge of moisture movement from a point source is most critical in designing, operating and managing a trickle irrigation system. This knowledge could help improve the irrigation efficiency so that maximum growth and production could be achieved per unit of water. A simple procedure was developed which reasonably predicted the wetted soil volume, lateral movement and vertical movement of water from a point source. The underlying assumptions are that the soil moisture in the wetted profile approximates field capacity and trickle irrigation is defined to exclude large flow rates which would cause excessive ponding and surface runoff or small flow rates which would not increase the soil moisture so it can approach field capacity. Moisture contents in excess of field capacity would be lost to deep percolation because of gravity. This procedure was verified with field tests on a Superstition Fine Sand soil and in the laboratory on a Gadsden Clay soil. The moisture movement in the soil from a trickle source is more a function of the water volume applied than the rate at which it was applied. Higher flow rates can cause greater moisture contents in the soil during the application but the values decrease and approach water contents from lower flow rates if given similar redistribution periods. It is expected that the procedure for predicting wetted soil volume, lateral movement and vertical movement can be used by both designers and managers of trickle irrigation systems. Estimates of the soil moisture contents and volume of water applied are needed. Greater accuracy in predicting the moisture movement can be attained by some simple measurements in the field. The procedure resulting from this study is more advantageous over the mathematical models which require complicated unsaturated hydraulic conductivity functions and high-speed computers to solve them.
294

MAPPING SURFACE SOIL MOISTURE AND ROUGHNESS BY RADAR REMOTE SENSING IN THE SEMI-ARID ENVIRONMENT

Rahman, Mohammed Magfurar January 2005 (has links)
Information about the distribution of surface soil moisture can greatly benefit the management of agriculture and natural resource. However, direct measurement of soil moisture over larger areas can be impractical and expensive, which has led scientists to develop satellite based remote sensing techniques for soil moisture assessments. Retrieving soil moisture from radar satellite imagery often associated with the collection and use of ancillary field data on surface roughness. However, field data that is meant to characterize surface roughness is often unreliable, is expensive to collect and is nearly impossible to acquire for large scale applications. These issues represent barriers to the adoption and of radar data for mapping soil moisture over large areas.The research presented in the dissertation is aimed at the development of an operational soil moisture assessment system based solely on radar satellite data and a radar model, eliminating the field data requirements altogether. The research is directed towards a so-called equation-based solution of the problem as an alternative to the approach that requires the use of extensive field-data sets on surface roughness. This approach is based on the concept that if the number of equations are equal to the number of unknowns, then explicit solutions of all unknowns are possible. My research derived the necessary equations to solve for soil moisture and surface roughness. The derivation of the equations and how to use them to estimate soil moisture without using ancillary field data was demonstrated by my research. Validation results showed that the equation-based method that was developed is capable of providing more precise estimates of surface soil moisture than that of ancillary field-data supported method.
295

Water and salt distribution in a soil under trickle irrigation

Saraiva Leao, Moies Custodio,1939- January 1975 (has links)
A field study was conducted to determine water and salt distribution patterns in a soil irrigated by pairs of double-chamber, perforated polyethylene tubes. The study consisted of two experiments: a water distribution experiment and a salt distribution experiment. Both experiments were conducted at the same site with experimental plots having two perforated lines 9 m long, spaced 0.60 m. The tubing had outer orifices 0.5 mm in diameter spaced 0.30 m along the tubes. The water distribution experiment consisted of water application to the bare soil for periods of time of 3, 6, 9, and 12 hours. After each test a trench was dug normal to the irrigation tubes and samples were taken to determine soil moisture on a dry weight basis. Moisture profiles are presented for the various tests. The salt distribution experiment was conducted in the Fall of 1973 and repeated in the Spring of 1974. It consisted of four irrigation treatments comprising two irrigation levels and two levels of salt in the irrigation water (327 and 2000 milligrams per liter of salts). Experimental plots were planted with lettuce and soil samples taken after planting and after harvesting the lettuce. Soil samples were analyzed for electrical conductivity of the soil saturation extract, pH, calcium, magnesium, sodium, potassium and nitrates. Saturation extract conductivity profiles in the soil are presented for different treatments. After planting and after harvest concentrations of calcium, magnesium, sodium, potassium, nitrates and pH values are also shown. Seasonal water application and lettuce yields are presented for both trials Water movement in the soil was 2 to 3 times greater in the horizontal than in the vertical direction. Wetted soil volume showed a high positive correlation with both the volume of water applied and with time of application. Salt accumulation occurred mainly at the soil surface between the irrigation tubes and away from the main root zone of the plants. The surface accumulation was followed by a leached zone. There were no significant differences in yield among plots receiving different treatments. Seasonal water application was less than half of the seasonal amount of water normally applied for furrow irrigated lettuce in the Tucson area. It was higher than experimental determinations of seasonal consumptive use for lettuce at Mesa, Arizona. The study indicated that trickle irrigation with water of high salt content is likely to cause a high surface concentration of salts. Application of extra amounts of water by the trickle system, or another method, is recommended to leach the salts to a depth below the crop root zone.
296

Spatial variability of in situ available water

Guma'a, Guma'a Sayed. January 1978 (has links)
Spatial variation of in situ available water content was studied along with related parameters over three 16-ha irrigated fields. The fields, two near Marana (Pima County, Arizona) and one near Casa Grande (Pillai County), range in texture from very fine loam to loamy sand. All soil series present are mapped as Entisols or Aridisols. A 50-m grid provided 56 sampling sites in each field. Each site was sampled at 30, 60, 90, 120 and 150 cm. Samples were collected from each field following a heavy irrigation in March 1977. Bulk samples were collected two days and four weeks after the application of approximately 300 mm of water, to determine in situ water content at field capacity and moisture redistribution with time. Related parameters such as particle size distribution and soil water characteristics were also studied. Bulk density and saturated hydraulic conductivity were determined from undisturbed, core samples. The measured parameters showed different patterns of variation within the same field as well as from one field to the other. Spatial variability of saturated hydraulic conductivity was the highest for which coefficient of variability (CV) ranged upward to 108%. Bulk density, on the other hand, showed the lowest coefficient of variability, as low as 5%. The in situ available water content (AWC), estimated by subtracting moisture content at 15 bars from the corresponding in situ FC values, showed a general tendency to increase with depth corresponding to the increase in percent silt plus sand with depth in all three fields. The coefficient of correlation between the two parameters was high (up to 0.70). The mean values of AWC as estimated using 0.1 bar values for field capacity in the laboratory were consistently higher than the in situ values. The values were within 25 - 35% of each other in Fields 1 and 2, while in the sandier soil of Field 3, the AWC was overestimated by an average of 74% in the laboratory. The CV showed an irregular tendency to increase with depth, but was consistently high in the 150 cm layer in all three fields. Values estimated in the laboratory showed lower CV and higher correlations with soil separates than in situ AWC in all three fields. These two observations can be attributed to the elimination of in situ factors such as texture stratification, compaction, and/or amount of water applied. Agricultural soil formed on water transported material at 0.1 bar were highly correlated with sand (r = -0.8) and the 15 bar values were better correlated with clay (r = 0.5). Also, the coefficient of variability increased consistently with decreases in moisture content. The analysis of variance showed the three fields to be heterogeneous. The variation for within and between the 5 depth groups was significant. A two-way interaction between depths and subareas within each field accounted for 44, 45 and 38% of the total variability in Fields 1, 2, and 3 respectively. Cumulative frequency distribution plots, full normal plots, Kolmogorov-Smirnov tests of goodness-of-fit, tests of skewness and tests of kurtosis were conducted to test the null hypothesis of normal distribution for each parameter. The full normal plots, being sensitive to deviations from normality, rejected the null hypothesis in all cases with few exceptions. They showed the data tends to be skewed to the right and/or kurtic. The alternative frequency distribution of the parameters indicated the data to be asymmetric, short tailed with the exception of percent sand which was symmetric, short tailed for all three fields. A power transformation is suggested as a possibility for transforming the data to get near normal distribution.
297

Quantifying the Role of Hydrologic Variability in Soil Carbon Flux

Stielstra, Clare M. January 2012 (has links)
Soil carbon (C) is the largest terrestrial carbon pool. While inputs to this system are fairly well constrained, the diverse factors driving soil C efflux remain poorly understood. Carbon in surface soils is mobilized via two distinct pathways: CO₂ gas flux and dissolved C flux. The goal of this study was to quantify the role of hydrologic variability in mobilizing carbon as gaseous and dissolved fluxes from near-surface soils, and to determine their relative magnitudes. Data were collected through 2010 and 2011 from two subalpine sites in Arizona and New Mexico. I observed no significant variability in dissolved fluxes, and these values were low at all sites. In contrast, CO₂ fluxes were large (from 0.22 g C m⁻² d⁻¹ to 5.27 g C m⁻² d⁻¹) and varied between sites and between years. My results suggest that in arid montane forests soil carbon flux is critically linked to water availability.
298

Effects of soil moisture stress and inter-plot competition on grain yield and other agronomic characteristics of sorghum and pearl millet

Rahman, Azizur, 1954- January 1989 (has links)
Sorghum (Sorghum bicolor L., Moench) and pearl millet (Pennisetum americanum L., Leeke) were intercropped under soil moisture non-stress and stress at Marana, Arizona during summer 1987. Effects of soil moisture stress and inter-row competition between sorghum and pearl millet on grain yield, 50% bloom, plant height, head length, head exsertion, 1000 grain weight, and number of effective tillers were evaluated. Interplot competition significantly reduced grain yield and head exsertion of peal millet. In sorghum, only plant height was significantly different due to competition. Agronomic characters were significantly different due to the effect of soil moisture stress except head length in pearl millet and head length, 1000 seed weight, and number of effective tillers in sorghum. Sorghum growing in a neighbor plot greatly suppressed millet grain yield under soil moisture stress. Relative yield total of the cereals under intercrop was less than unity under soil moisture stress.
299

Mechanisms of water colour release from organic soils and consequences for catchment management

Miller, Christopher James January 2008 (has links)
Water colour is the naturally occurring yellow-brown 'tea like' discolouration which can be observed in freshwaters, and is typically composed of high molecular weight organic carbon. Water discolouration is a major problem for the water industry as over the past 30 years, water colour release has more than doubled, greatly increasing treatment costs and making land management a more feasible option for improving water quality. This project was developed in conjunction with Yorkshire Water Plc, to investigate the mechanisms of water colour production, and the implications that these mechanisms have for land management to improve water quality. In particular, the study aimed to identify the key relationships between drainage water quality and quantity, soil processes and vegetation type that are pivotal to the understanding of water discolouration.
300

Cover crop effects on soil moisture and water quality

Abel, David Scott January 1900 (has links)
Master of Science / Department of Agronomy / Nathan O. Nelson / Eutrophication of freshwater lakes and streams is linked to phosphorus (P) fertilizer loss from agriculture. Cover crops could help mitigate P loss but producers are concerned that they may use too much water. This study was conducted to better understand the effects cover crops have on soil moisture and P loss. Volumetric water content (θ) was measured at the Kansas Cover Crop Water Use research area at 10 depths throughout a 2.74 m soil profile in 5 cover crop treatments and compared to θ measured from a chemical fallow control. Total profile soil moisture in sorghum sudangrass (1.02 m) and forage soybean (1.03 m) did not significantly differ from chemical fallow (1.05 m) at the time of spring planting. However, water deficits were observed in double-crop soybean (1.01 m), crimson clover (0.99 m), and tillage radish (0.99 m). At the Kansas Agricultural Watersheds, runoff was collected and analyzed for total suspended solids, total P, and DRP from 6 cover crop/fertilizer management treatments over two years. In the first water year the cover crop reduced runoff, sediment, and total P loss by 16, 56, and 52% respectively. There was a significant cover by fertilizer interaction for DRP loss. When P fertilizer was broadcasted in the fall with a cover crop, DRP loss was reduced by 60% but was unaffected in the other two P fertilizer treatments. Results were different in the second water year. The cover crop reduced sediment loss (71% reduction), as was seen in year one, but neither the cover crop nor the fertilizer management had a significant effect on runoff volume or total P loss overall. Contrary to the 2014-2015 results, cover crop increased DRP load by 48% in 2015-2016. DRP load was 2 times greater in the fall broadcast treatment than it was in the spring injected treatment but there was not a significant fertilizer by cover crop interaction. In order to determine the long term effects of cover crops and P fertilizer management P loss parameters should be tracked for several more years.

Page generated in 0.0873 seconds