11 |
Understanding of coupled physicochemical and mineralogical mechanisms controlling soil carbon storage and preservationPitumpe Arachchige, Pavithra Sajeewani January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / Ganga M. Hettiarachchi / Soil carbon (C) sequestration has been recognized as one of the most effective potential mitigation options for climate change. Underlying mechanisms of soil C sequestration/preservation is poorly understood, even after decades of soil C research. The main research objectives of this dissertation were three-fold: (1) enhancing our understanding in mineralogical and physicochemical mechanisms of soil C sequestration in microaggregates, (2) understanding the chemistry of organic C sequestered in soil aggregates, and (3) to determine the resilience of C to different temperature-moisture regimes and physical disturbance in a six-month incubation. An integrated approach was used in obtaining a better picture on mechanisms of C preservation. Two long-term agroecosystems located at the North Agronomy Farm, Manhattan, KS (Mollisols) and the Center of Experimentation and Research Fundacep in Cruz Alta-RS, Brazil (Oxisols) were used. Main plots of both systems were till and no-till. Mollisols consisted of three fertilizer treatments; control, manure/compost and urea. Oxisols had three different crop rotations; simple, intermediate, and complex. Submicron level information gathered by spectromicroscopy approaches, identified the direct preservation of OC structures with the original morphology; suggesting that the preservation of OC is a primary mechanism of C sequestration in these soils. Physical protection and organo-mineral associations seemed to also be involved in OC preservation. Manure/compost addition and no-till favored labile C preservation in aggregates of Mollisols. Significant associations observed between reactive minerals and C pools in Mollisols indicated the significance of organo-mineral associations in OC preservation. Large microaggregates exerted strong C preservation through physical protection and organo-mineral associations. Unlike in Mollisols, Oxisols showed a poor correlation between reactive mineral fraction and organic C which indicated the significance of physical protection over organo-mineral associations. Resilience of sequestred C was significantly affected by temperature across both temperate and tropical soil ecosystems, directly and indirectly. High temperature influenced soil acidity and reactive minerals, ultimately affecting organo-mineral associations. Macromolecular propeties of humic acid fraction showed changes after six months. Overall, direct and indirect evidence from this study suggested that the preservation of SOC is an ecosystem property supporting the newly proposed theories in soil C dynamics.
|
12 |
Annual carbon balance of an intensively grazed pasture: magnitude and controlsMudge, Paul Lawrence January 2009 (has links)
Soil carbon (C) is important because even small changes in soil C can affect atmospheric concentrations of CO₂, which in turn can influence global climate. Adequate soil carbon is also required to maintain soil quality, which is important to if agricultural production is to be sustained. The soil carbon balance of New Zealand's pastoral soils is poorly understood, with recent research showing that soils under dairy pasture have lost large amounts of C during the past few decades. The main objective of this research was to determine an annual farm scale C budget for an intensively grazed dairy farm, with a second objective being to determine the amount of CO₂-C lost following cultivation for pasture renewal, and soil pugging by dairy cattle. A third objective was to investigate the environmental controls of CO₂ exchange in a dairy farm pasture system. Net ecosystem exchange (NEE) of CO₂ was measured using an eddy covariance (EC) system from 15 December 2007 to 14 December 2008. Closed chamber techniques were used to measure CO₂ emissions from three cultivated paddocks and three adjacent pasture paddocks between 26 January 2008 and 5 March 2008. CO₂ emissions were also measured using chambers from pugged and control plots between 25 June and 5 August. Coincidentally this research was carried out in a year with a severe summer/autumn drought and a wetter than usual winter. Annual NEE measured with the eddy covariance system was -1,843 kg C ha⁻¹ (a C gain by the land surface). Accounting for C in supplement import, milk export, pasture export and losses in methane, the dairy pasture system was a net sink of -880±500 kg C ha⁻¹. This C sequestration occurred despite severe drought during the study, which was in contrast to other studies of grasslands during drought. Cultivation under dry conditions did not increase cumulative CO₂-C emissions compared to adjacent pasture paddocks. However, when C inputs to pasture paddocks via photosynthesis were included in calculations, net C loss from the cultivated paddocks (during the 39 day study) was estimated to be 622 kg C ha⁻¹ more than the pasture paddocks. CO₂ emissions were lower from pugged plots compared to control plots, probably caused by decreased microbial and root respiration due to wetter soil conditions, and lowered root respiration as a result of lower pasture production. Volumetric soil moisture content (soil moisture) had a dominant effect on CO₂ exchange at a range of temporal scales. Respiration and photosynthesis were both reduced when soil moisture was below 43% (~the lower limit of readily available water) and photosynthesis virtually ceased when soil moisture declined below 24% (~wilting point). Soil moisture also influenced the relationship between temperature and respiration and photosynthetic flux density (PPFD) and NEE. These results suggest that management related soil disturbances of occasional cultivation for pasture renewal and soil pugging, are unlikely to cause large losses of soil C. Further, a severe drought also did not cause CO₂-C losses from the land surface to the atmosphere on an annual scale, in contrast to previous studies.
|
13 |
The effects of salinity and sodicity on soil organic carbon stocks and fluxesWong, Vanessa, u2514228@anu.edu.au January 2007 (has links)
Soil is the worlds largest terrestrial carbon (C) sink, and is estimated to contain approximately 1600 Pg of carbon to a depth of one metre. The distribution of soil organic C (SOC) largely follows gradients similar to biomass accumulation, increasing with increasing precipitation and decreasing temperature. As a result, SOC levels are a function of inputs, dominated by plant litter contributions and rhizodeposition, and losses such as leaching, erosion and heterotrophic respiration. Therefore, changes in biomass inputs, or organic matter accumulation, will most likely also alter these levels in soils. Although the soil microbial biomass (SMB) only comprises 1-5% of soil organic matter (SOM), it is critical in organic matter decomposition and can provide an early indicator of SOM dynamics as a whole due to its faster turnover time, and hence, can be used to determine soil C dynamics under changing environmental conditions.¶
Approximately 932 million ha of land worldwide are degraded due to salinity and sodicity, usually coinciding with land available for agriculture, with salinity affecting 23% of arable land while saline-sodic soils affect a further 10%. Soils affected by salinity, that is, those soils high in soluble salts, are characterised by rising watertables and waterlogging of lower-lying areas in the landscape. Sodic soils are high in exchangeable sodium, and slake and disperse upon wetting to form massive hardsetting structures. Upon drying, sodic soils suffer from poor soil-water relations largely related to decreased permeability, low infiltration capacity and the formation of surface crusts. In these degraded areas, SOC levels are likely to be affected by declining vegetation health and hence, decreasing biomass inputs and concomitant lower levels of organic matter accumulation. Moreover, potential SOC losses can also be affected from dispersed aggregates due to sodicity and solubilisation of SOM due to salinity. However, few studies are available that unambiguously demonstrate the effect of increasing salinity and sodicity on C dynamics. This thesis describes a range of laboratory and field investigations on the effects of salinity and sodicity on SOC dynamics.¶
In this research, the effects of a range of salinity and sodicity levels on C dynamics were determined by subjecting a vegetated soil from Bevendale, New South Wales (NSW) to one of six treatments. A low, mid or high salinity solution (EC 0.5, 10 or 30 dS/m) combined with a low or high sodicity solution (SAR 1 or 30) in a factorial design was leached through a non-degraded soil in a controlled environment. Soil respiration and the SMB were measured over a 12-week experimental period. The greatest increases in SMB occurred in treatments of high-salinity high-sodicity, and high-salinity low-sodicity. This was attributed to solubilisation of SOM which provided additional substrate for decomposition for the microbial population. Thus,
as salinity and sodicity increase in the field, soil C is likely to be rapidly lost as a result of increased mineralisation.¶
Gypsum is the most commonly-used ameliorant in the rehabilitation of sodic and saline-sodic soils affected by adverse soil environmental conditions. When soils were sampled from two sodic profiles in salt-scalded areas at Bevendale and Young, SMB levels and soil respiration rates measured in the laboratory were found to be low in the sodic soil compared to normal non-degraded soils. When the sodic soils were treated with gypsum, there was no change in the SMB and respiration rates. The low levels of SMB and respiration rates were due to low SOC levels as a result of little or no C input into the soils of these highly degraded landscapes, as the high salinity and high sodicity levels have resulted in vegetation death. However, following the addition of organic material to the scalded soils, in the form of coarsely-ground kangaroo grass, SMB levels and respiration rates increased to levels greater than those found in the non-degraded soil. The addition of gypsum (with organic material) gave no additional increases in the SMB.¶
The level of SOC stocks in salt-scalded, vegetated and revegetated profiles was also determined, so that the amount of SOC lost due to salinisation and sodication, and the increase in SOC following revegetation relative to the amount of SOC in a vegetated profile could be ascertained. Results showed up to three times less SOC in salt-scalded profiles compared to vegetated profiles under native pasture, while revegetation of formerly scalded areas with introduced pasture displayed SOC levels comparable to those under native pasture to a depth of 30 cm. However, SOC stocks can be underestimated in saline and sodic landscapes by setting the lower boundary at 30 cm due to the presence of waterlogging, which commonly occurs at a depth greater than 30 cm in saline and sodic landscapes as a result of the presence of high or perched watertables. These results indicate that successful revegetation of scalded areas has the potential to accumulate SOC stocks similar to those found prior to degradation.¶
The experimental results from this project indicate that in salt-affected landscapes, initial increases in salinity and sodicity result in rapid C mineralisation. Biomass inputs also decrease due to declining vegetation health, followed by further losses as a result of leaching and erosion. The remaining native SOM is then mineralised, until very low SOC stocks remain. However, the C sequestration potential in these degraded areas is high, particularly if rehabilitation efforts are successful in reducing salinity and sodicity. Soil ecosystem functions can then be restored if organic material is available as C stock and for decomposition in the form of either added organic material or inputs from vegetation when these salt-affected landscapes are revegetated.
|
14 |
Post-fire recovery of carbon and nitrogen in sub-alpine soils of south-eastern AustraliaShrestha, Hari Ram January 2009 (has links)
The forests of south-eastern Australia, having evolved in one of the most fire-prone environments in the world, are characterized by many adaptations to recovery following burning. Thus forest ecosystems are characterized by rapid regenerative capacity, from either seed or re-sprouting, and mechanisms to recover nutrients volatilized, including an abundance of N2 fixing plants in natural assemblages. Soil physical, chemical and biological properties are directly altered during fire due to heating and oxidation of soil organic matter, and after fire due to changes in heat, light and moisture inputs. In natural ecosystems, carbon (C) and nitrogen (N) lost from soil due to fires are recovered through photosynthesis and biological N2 fixation (BNF) by regenerating vegetation and soil microbes. / This study investigated post-fire recovery of soil C and N in four structurally different sub-alpine plant communities (grassland, heathland, Snowgum and Alpine ash) of south-eastern Australia which were extensively burnt by landscape-scale fires in 2003. The amount and isotopic concentration of C and N in soils to a depth of 20 cm from Alpine ash forest were assessed five years after fire in 2008 and results were integrated with measurements taken immediately prior to burning (2002) and annually afterwards. / Because the historical data set, comprised of three soil samplings over the years 2002 to 2005, consisted of soil total C and N values which were determined as an adjunct to 13C and 15N isotopic studies, it was necessary to establish the accuracy of these IRMS-derived measurements prior to further analysis of the dataset. Two well-established and robust methods for determining soil C (total C by LECO and oxidizable C by the Walkley-Black method) were compared with the IRMS total C measurement in a one-off sampling to establish equivalence prior to assembling a time-course change in soil C from immediately pre-fire to five years post-fire. The LECO and IRMS dry combustion measurements were essentially the same (r2 >0.99), while soil oxidizable C recovery by the Walkley-Black method (wet digestion) was 68% compared to the LECO/IRMS measurements of total C. Thus the total C measurement derived from the much smaller sample size (approximately 15 mg) combusted during IRMS are equivalent to LECO measurement which require about 150 mg of sample. / Both total C and N in the soil of Alpine ash forests were significantly higher than soils from Snowgum, heathland and grassland communities. The ratio of soil NH4+ to NO3- concentration was greater for Alpine ash forest and Snow gum woodland but both N-fractions were similar for heathland and grassland soils. The abundance of soil 15N and 13C was significantly depleted in Alpine ash but both isotopes were enriched in the heathland compared to the other ecosystems. Abundance of both 15N and 13C increased with soil depth. / The natural abundance of 15N and 13C in the foliage of a subset of non-N2 fixing and N2 fixing plants was measured as a guide to estimate BNF inputs. Foliage N concentration was significantly greater in N2 fixers than non-N2 fixers while C content and 13C abundance were similar in both functional groups. Abundance of 15N was depleted in the N2 fixing species but was not significantly different from the non-N2 fixers to confidently calculate BNF inputs based on the 15N abundance in the leaves. / The total C pool in soil (to 20 cm depth) had not yet returned to the pre-fire levels in 2008 and it was estimated that such levels of C would be reached in another 6-7 years (about 12 years after the fire). The C and N of soil organic matter were significantly enriched in 15N and 13C isotopes after fire and had not returned to the pre-fire levels five years after the fire. It is concluded that the soil organic N pool can recover faster than the total C pool after the fire in the Alpine ash forests.
|
15 |
Environmental Modelling : Learning from UncertaintyJuston, John M. January 2012 (has links)
Environmental models are important tools; however uncertainty is pervasive in the modeling process. Current research has shown that understanding and representing these uncertainties is critical when decisions are expected to be made from the modeling results. One critical question has become: how focused should uncertainty intervals be with consideration of characteristics of uncertain input data, model equation representations, and output observations? This thesis delves into this issue with applied research in four independent studies. These studies developed a diverse array of simply-structured process models (catchment hydrology, soil carbon dynamics, wetland P cycling, stream rating); employed field data observations with wide ranging characteristics (e.g., spatial variability, suspected systematic error); and explored several variations of probabilistic and non-probabilistic uncertainty schemes for model calibrations. A key focus has been on how the design of various schemes impacted the resulting uncertainty intervals, and more importantly the ability to justify conclusions. In general, some uncertainty in uncertainty (u2) resulted in all studies, in various degrees. Subjectivity was intrinsic in the non-probabilistic results. One study illustrated that such subjectivity could be partly mitigated using a “limits of acceptability” scheme with posterior validation of errors. u2 was also a factor from probabilistic calibration algorithms, as residual errors were not wholly stochastic. Overall however, u2 was not a deterrent to drawing conclusions from each study. One insight on the value of data for modeling was that there can be substantial redundant information in some hydrological time series. Several process insights resulted: there can be substantial fractions of relatively inert soil carbon in agricultural systems; the lowest achievable outflow phosphorus concentration in an engineered wetland seemed partly controlled by rapid turnover and decomposition of the specific vegetation in that system. Additionally, consideration of uncertainties in a stage-discharge rating model enabled more confident detection of change in long-term river flow patterns. / <p>QC 20121105</p>
|
16 |
Soil carbon and nitrogen dynamics along replicated chronosequences of abandoned agricultural lands in southeastern OntarioFoote, Robyn Louise 20 December 2007 (has links)
Widespread abandonment of agricultural land has occurred in northeastern North America over the past two centuries. Soil carbon often increases as sites naturally regenerate towards perennial grasslands or forests. Understanding the large-scale controls on the potential and rate of soil carbon sequestration is necessary in order to evaluate the significance of this sink to the global carbon cycle. Furthermore, we need to understand the key roles soil microorganisms play in regulating ecosystem processes through their control over soil carbon and nitrogen dynamics. Such studies are rare at the century long time scale of temperate forest succession. Additionally, research has taken place primarily on productive agricultural soils, while abandonment is more common on marginal agricultural soils. We characterized patterns of total and labile soil carbon and nitrogen and microbial dynamics in mature forest and adjacent agricultural field sites, and in replicated chronosequences of forest successional sites on marginal soils of southeastern Ontario, Canada.
Total soil carbon was significantly depleted in the top 10 cm of current agricultural fields as compared to forest sites and increased at a rate of 10 g C m-2 yr-1 across our 100-year chronosequences. There was no difference in carbon loss or accumulation over time in three soil types differing in texture and parent material, suggesting that time since abandonment is more important than soil type in determining carbon accumulation within this climatic region. In contrast, free-light fraction carbon did not increase over time and thus most carbon accumulated in pools with slower turnover times. Soil microbial biomass carbon and nitrogen increased significantly following abandonment and our results strongly suggest that microbial growth during all phases of succession was limited by carbon supply. In contrast, net nitrogen mineralization and nitrification rates during mid-summer did not change consistently over the first 100 years following agricultural abandonment. Therefore, inorganic nitrogen supply rates into the plant available pool were similar across the entire successional sequence. Together, the results of these two studies demonstrate the potential for carbon sequestration in abandoned agricultural soils across this climatic region and highlight the importance of plant-soil interactions for understanding carbon cycling during ecosystem development. / Thesis (Master, Biology) -- Queen's University, 2007-12-14 10:04:57.395
|
17 |
FEEDING BEHAVIOUR OF FOLSOMIA CANDIDA AS INFLUENCED BY DIET-SWITCHING IN THE PRESENCE OF LIVE MAIZE ROOTSEerpina, Ramesh 30 October 2013 (has links)
ABSTRACT
Collembola are known to feed on soil fungi, mycorrhizae and plant derived products. A recent study revealed that one species of Collembola, Protaphorura fimata, completely switched from decomposer to herbivore when live roots were present. The current study investigated the occurrence of diet-switching in Folsomia candida Willem. from plant detritus to live by examining its dietary preferences using stable isotope techniques. They were offering with live maize roots (C4 plant) in C3 soil, along with 15N enriched ryegrass litter and. Results demonstrated the presence of a partial diet-switch from detritus to live maize roots. Additional tests suggested that the diet-switch towards maize roots was a response to both improved food quality and greater food availability. The presence of live roots improved the body growth of F. candida and the incorporation of C from live roots into Collembola tissue suggesting
|
18 |
Effects of winter snowpack on microbial activity, community composition, and plant-microbe interactions in mixed-hardwood temperate forestsSorensen, Patrick 09 November 2016 (has links)
Mean winter air temperatures have risen by 2.5˚C over the last 50 years in the northeastern U.S., reducing mean annual winter snowpack depth by 26 cm and the duration of winter snow cover by four days per decade. Because snow cover insulates soil from below-freezing air temperatures, continued declines in snowpack depth are projected to be accompanied by colder winter soil temperatures and more frequent soil freeze-thaw events. Soil bacteria and fungi will play a significant role in the forest ecosystem response to snowpack loss because they are the primary agents that carry out soil organic matter decomposition and soil nutrient cycling. Additionally, the effect of winter snowpack decline on soil bacterial and fungal communities may act indirectly via winter climate change effects on plant roots. The objectives of my dissertation research were to first determine the effect that reductions in winter snow cover has on microbial exoenzyme activity, microbial respiration, net nitrogen (N) mineralization, and net nitrification rates in two mixed-hardwood forests (Harvard Forest, MA and Hubbard Brook Experimental Forest, NH). Additionally, I sought to determine the relative role that abiotic factors (i.e., winter snow cover or soil frost) versus biotic factors (i.e., altered root-microbe interactions) contribute to overall changes in soil biogeochemical processes as winter snow cover declines. I found that winter snow depth and duration are related positively to microbial exoenzyme activity and microbial respiration following snowmelt in spring, but this relationship is transient and attenuates into the growing season. By contrast, soil freeze-thaw events during winter result in persistent declines in microbial oxidative enzyme activity that are not compensated for by warming soils during the growing season. Together, these results suggest that loss of winter snow cover will result in lower rates of nutrient cycling in northeastern U.S. hardwood forests. Tree roots interact with winter snow depth to affect net mineralization and nitrification rates, as well as bacterial and fungal community composition. Thus, winter climate change portends a reorganization of root-microbe interactions with important consequences for soil biogeochemical cycling in mixed hardwood forests of the northeastern U.S.
|
19 |
Biochar amendment as a tool for improving soil health and carbon sequestration in agro-ecosystemsDrew, Sophia Eliza 14 September 2022 (has links)
Conventional farming practices and land-use conversions drive carbon out of soil and into the atmosphere, where it contributes to climate change. Biochar, a soil amendment produced by pyrolyzing organic feedstocks under low-oxygen conditions, is a promising tool to restore soil carbon and draw down atmospheric carbon dioxide. Biochar has received considerable attention from scientists, growers, and environmentalists in the last 20 years, but there is still a gap between academic research and practical recommendations on biochar production and application that are relevant to small-scale growers. Here I present the results from two complementary studies that demonstrate the utility of local-scale biochar systems and provide some recommendations for those looking to work with biochar. The first study sought to determine the impact of biochar amendments on soil carbon and nutrient retention on three working farms across a variety of soil types, cropping systems, and climates in the United States. The effect of biochar amendment depended on initial soil characteristics and the properties of the biochar applied. Biochar amendments increased soil carbon in all three sites and increased soil nitrogen at two of the three. In this study pyrolysis conditions appeared to be as important as local soils and climate influences on the efficacy of biochar treatments. The second study was a life cycle assessment using SimaPro software to quantify the carbon balance and global warming potential of biochar produced from three local feedstocks (softwood, hardwood, and hay) applied to pasture soils in Southwest Virginia. Feedstock type, pyrolysis gas yield, and transportation distance significantly contributed to variation in the carbon balance of each agro-ecosystem. Biochar made from softwood lumber scraps performed best, with the highest net carbon storage and lowest global warming potential, followed by biochar made from hardwood scraps. Hay biochar performed worst, with positive carbon emissions (i.e., more carbon released than stored over its life cycle) in most scenarios tested, mainly because of its low biochar yield and the carbon emissions associated with agronomic production and transportation. Together these studies demonstrate the potential of local biochar systems to improve both soil health and carbon sequestration, and reinforce how important it is to know the characteristics of the soil and the production history and properties of the biochar being applied in order to meet soil health and carbon sequestration goals. / Master of Science / Conventional farming practices break down organic material in the soil, which decreases the capacity of soils to sustain crop growth and contributes to climate change as the soil releases carbon dioxide and other greenhouse gasses into the atmosphere. Biochar, or charcoal that is deliberately incorporated into soil, is gaining popularity among farmers, gardeners, and climate scientists for its ability to improve soil health and draw carbon out of the atmosphere to create stable long-term pools of carbon underground. Unfortunately, much of the research on biochar does not translate easily into recommendations for growers and land-managers to make and use biochar. Here I discuss the results from two studies examining the effect of biochar on soil health and carbon sequestration on local scales. In the first experiment I analyzed soil samples shared by farmers in New Mexico, Minnesota and Virginia who applied locally-sourced biochar to their soils. I found that the initial characteristics of the soil and of the biochar affected how the biochar application changed agriculturally-relevant soil properties. In general, biochar improved soil carbon and nitrogen levels, had mixed effects on soil pH depending on the biochar's pH, and had no effect on electrical conductivity (a measure of soil salinity). The second study was a life cycle assessment that quantified and compared greenhouse gas emissions of three different types of biochar, from feedstock harvest to biochar application to soil. I found that the type of feedstock used to make biochar, the amount of gas emitted during the conversion process, and the distance the feedstocks and biochar were transported all played a role in the overall carbon balance of the life cycle. The biochar made from softwood scraps performed best from a carbon storage perspective, followed by biochar made from hardwood. These two biochars tended to return more carbon to the soil than they emitted over their life cycle. The biochar made from hay performed worst, and emitted more carbon than it stored in most of the scenarios I tested. Together these studies show the potential of local biochar systems to improve both soil health and carbon sequestration and reinforce how important it is to be familiar with the soil and the production history and properties of the biochar being applied in order to meet soil health and carbon sequestration goals.
|
20 |
Exploring the Impact of Climate and Productivity on Soil Carbon Across the Native Range of Loblolly PinePrice, Aaron Cooper 30 August 2024 (has links)
Policies intended to pursue climate mitigation through soil carbon sequestration require accurate estimates of soil carbon stocks and projections of how carbon pools will change with future climate. In this study, the process model MIMICS-CN was utilized to explore the potential changes in bulk soil organic carbon (SOC) and protected mineral-associated organic matter (MAOM) with changes in mean annual temperature (MAT) and annual net primary productivity (NPP) for the native range of loblolly pine (Pinus taeda L). A Monte Carlo method was used to calibrate a large ensemble of model parameters using observational data from loblolly pine stands. Spatial projections of carbon pools across the native range of loblolly pine were produced for nine temperature and productivity scenarios representing a range of likely futures. The standard deviation of the mean total SOC pool to a depth of 30 cm was 3.6 kg C m-2 while the standard deviation of potential changes in pool magnitude was 0.96 kg C m-2. Associated with regional climate change projections, increases in MAT caused losses in bulk SOC but did not affect MAOM. Simulated increases in NPP resulted in increased bulk SOC, MAOM and the proportion of SOC that is MAOM (MAOM:SOC) highlighting the importance of productivity in sequestering atmospheric CO2 in general and in protected C pools, specifically. SOC pools did not change consistently across the landscape. Rather, they varied by subregion due to differences in soil texture and changes in forecasted NPP. Soils with clay contents above 18% had the greatest potential to accumulate MAOM and bulk SOC under a realistic future climate scenarios. In regions with low clay content, significant increases in total SOC are driven by the accumulation of C in unprotected SOC sub-pools. With the maximum likely increase in NPP (31.4%), a regionwide increase in total SOC of 29% was projected whereas subregions in which NPP decreases showed no potential to increase soil carbon stocks. We conclude that the management of loblolly pine to increase productivity can increase the amount of SOC and the residence time of bulk SOC over decadal time scales, however regional differences in the proportion of C in MAOM and unprotected pools must be considered when planning silvicultural management. / Master of Science / Managing soil carbon in southeastern U.S. loblolly pine forests creates a sustainable system of producing large quantities of forest products and has the potential to remove carbon dioxide from the atmosphere. Accurate estimates of the amount of carbon in soils at regional scales and projections of changes in soil carbon caused by global change are critical components to successfully determining the effectiveness of this approach to climate change mitigation. In this study, a model of soil carbon designed to describe the range of loblolly pine is utilized to simulate soil carbon changes using three realistic potential increases in temperature and three projections of changing ecosystem productivity to the year 2050. As temperature increases, the total amount of carbon in soils decreases because the rate of decomposition by microbial organisms hastens. However, with increasing productivity, losses of soil carbon due to increased temperatures are mitigated, and, at the highest levels of productivity, soil carbon stocks and the resistance of soil carbon to future losses increase by up to 26 percent. Here, we propose a productivity focused management approach to sequestering carbon in loblolly pine soils and highlight sub regions which may be more vulnerable to soil carbon losses due to environmental factors such as flooding and nutrient limitations.
|
Page generated in 0.0682 seconds