• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Irrigation Plus Nitrogen Rate Effects on Hybrid Bermudagrass Hay Yield and Quality, With Preliminary Evaluation of NDVI, Tissue, and Soil Nitrate-N Sampling as Diagnostic Tools

Carter, Timothy Donald 01 May 2011 (has links)
A nitrogen fertility study with Vaughn’s hybrid bermudagrass conducted on a Crider silt loam soil (fine, silty, mixed, active, mesic Typic Paleudalfs) over three (3) years (2008-2011) at the Highland Rim Research and Education Center near Springfield, Tennessee is evaluated in this manuscript. Nitrogen applications are evaluated in both irrigated and non-irrigated plots at five (5) different application rates: 0, 56, 112, 168, and 224 kg N ha-1. These rates are applied beginning in late April, and three (3) additional times upon harvests occurring in June, July, and August. Irrigation plots receive enough water to bring total weekly water up to 2.24 cm/plot whenever rainfall is less than that amount. Normalized difference vegetative index (NDVI) measurements are collected mid harvest and on harvest dates to investigate new nitrogen status indicators between Vaughn’s hybrid bermudagrass yields. Plant tissue samples are collected at harvest. Soil samples are collected mid harvest to investigate soil nitrate nitrogen and its relationship with bermudagrass yields. The results of the study show irrigation has no effect on yields during the period of this study. There is a significant effect resulting from the interaction between month and nitrogen application on yield. Investigation of this interaction reveals two (2) distinct periods of production potential during the growing season. A low to medium yielding period produces an average harvest yield maximum of 3.14 Mg ha-1. A medium to high yield period produces an average harvest yield maximum of 5.4 Mg ha-1. Based on an analysis of variance and mean separation, a nitrogen rate of 56 kg N ha-1 rate is recommended for harvests occurring during the low to medium yielding period, and a nitrogen rate of 113 kg N ha-1 is recommended for those occurring during the high to medium yielding period. NDVI is highly correlated with yield on date of harvest. The results also show NDVI is correlated with mid-harvest yields also, which suggests a possible development of using NDVI as a mid harvest nitrogen status indicator. The results show soil nitrate is not correlated with yield, but did indicate accumulation in the soil as the growing season progressed.
2

INFLUENCE OF TILLAGE AND COVER CROP ON SOIL NITROUS OXIDE EMISSION IN CORN AND WINTER CEREAL RYE

Tiwari, Madhabi 01 May 2022 (has links)
Food production security and resiliency require combination of agricultural management practices that are environmentally friendly and economically viable. Cover crops and tillage are two typical management practices that influence corn (Zea mays L.) and soybean (Glycine max L.) production in Illinois and the Midwest, USA. Finding practices that could potentially reduce nitrous oxide (N2O) emissions and sequester carbon (C) in the soil can improve agricultural resiliency to climate change. Generally, shifting from reduced tillage (RT) to no-till (NT) improves soil structure and decreases C emissions or sequesters soil C but might increase N2O emissions. Including a legume cover crop such as hairy vetch (Vicia villosa L.) before corn is preferred to winter cereal cover crops (WCCCs) to avoid yield penalty in corn and ensure high grain production. Winter cereal cover crops such as winter cereal rye (Secale cereale) (WCR) could potentially decrease soil N2O emissions during fallow period by capturing residual N and reducing soil moisture. These conditions could change in soils with legacy tillage (RT vs. NT) effects due to changes in soil physical, chemical, and biological over time. We utilized a medium-term (six-year-old) trial to test several hypotheses. We hypothesized that RT increases the soil temperature, accelerates soil organic matter mineralization, and especially in combination with hairy vetch could increase soil N in the soil leading to increased corn grain yield and N2O emission (Chapter 1). We also hypothesized that WCR takes up residual N after harvesting corn, decrease soil N, use soil moisture, and therefore, could decrease soil N2O emission (Chapter 2). For study 1 (Chapter 1), our objective was to evaluate the influence of cover crop (hairy vetch) vs. a no CC control and tillage systems (RT vs. NT) on (i) corn yield, N uptake, removal, and N balance; (ii) N2O emissions during corn season; (iii) yield scaled N2O emissions on a long-term (eight years) tillage × cover cropping system during the corn growing season in 2019 and 2021. We also analyzed factors that influence N2O emissions via principal component analysis in corn season. In corn growing seasons, we found that corn grain yield was higher in RT than NT reflecting on more N in the soil in RT than NT. Hairy vetch increased corn grain yield, soil N, and N2O-N indicating increased corn grain yield by hairy vetch N contribution let to higher N loss. Yield-scaled N2O-N emissions in NT-2019 (3696.4 g N2O-N Mg-1) were twofold higher than RT-2019 (1872.7 g N2O-N Mg-1) and almost fourfold higher than NT-2021 and RT-2021 indicating in a wet year like 2019, yield-scaled N2O-N emissions were higher in NT than RT. Principal component analysis indicated N2O-N fluxes were less driven by soil N and more by environmental conditions and N balances reflecting on N application at planting in this trial. . The objectives for chapter 2 were to evaluate the legacy effect of tillage (RT vs. NT) and cover crops (WCR vs. a no cover crop control) on soil nitrate-N (NO3-N), volumetric water content (VWC), temperature, and N2O emission trends during a fallow period after corn in a six-yr trial. In spring 2020 we also estimated WCR biomass and N uptake as affected by tillage practices and compared WCR biomass to weeds in the no cover crop treatment. In rye growing season, winter cereal rye biomass was 55% higher than weeds in the fallow treatment. A linear positive relation between WCR biomass and N uptake (R2= 0.93) and C accumulation (R2 = 0.99) indicates WCR captures more N and adds more C inputs than weeds. Winter cereal rye biomass was also higher in RT than NT reflecting on higher soil temperature and N availability in RT than NT. Soil VWC was lower in WCR plots and there was a negative linear relation between days of the year (DOY) and VWC (R2 = 0.6). Despite all these differences, soil N2O-N values were mainly less than 5 g N2O-N ha-1d-1 in all sampling dates regardless of tillage or cover crop treatment. We conclude that in poorly drained Alfisols with claypan and fragipans, NT is not an effective strategy to decrease N2O-N fluxes. Hairy vetch benefits corn grain yield and supplement N but that increases N loss through N2O-N emissions. We concluded that we should focus on decreasing N2O emissions early in corn season since majority of N is lost during that time sometimes 300 times higher than those reported during the WCR phase. Some changes in management practices that could reduce N2O losses are shifting from upfront N application to sidedress N management, terminating hairy vetch at or even after corn planting, and combine these efforts with enhanced efficiency fertilizers that control nitrification and denitrification.
3

Soil nitrogen, active carbon, corn, and small grain response to manure injection

Hilfiker, Derek Richard 17 October 2023 (has links)
Manure injection is an alternative manure application method that places manure in subsurface bands rather than spreading it evenly across the soil surface as done with the typical broadcasting method. The reduced exposure of manure to air under injection can lead to greater N retention when compared to broadcasting, but also alters the spatial distribution of manure. This altered spatial distribution of manure could alter soil nutrient dynamics and crop growth; however, literature exploring this subject is limited. Therefore, this dissertation aimed to compare soil nitrate and active carbon levels between manure injection and broadcasting, assess the spatial distribution of soil N under injection, and determine if the subsurface bands under injection cause differential crop growth. An 8-site on-farm study was conducted comparing spring manure applications under corn silage. This study found that soil NO3-N was the same under injection and broadcasting but did alter the spatial distribution of soil NO3-N as it was consistently elevated in the injection band compared to between bands. No differences in active carbon were observed, even when measuring the injection band directly. This finding calls into question the usefulness of measuring active carbon in manured systems. Corn silage yields were only significantly increased at 1 of 8 sites, and this occurred at the one site that did not receive a sidedress N application, which suggests that N was not limiting at the other seven sites. A small-scale research plot study examining fall manure applications under small grains found similar results to the previous study. No consistent differences in soil NO3-N were observed between injected, broadcast, and control plots; however, soil NO3-N was greater in the injection band compared to between, a difference that persisted for two months after manure application. Evidence of soil NO3-N leaching was observed in one study year, suggesting soil NO3-N leaching under fall manure applications should be examined. No consistent differences in soil active carbon were observed, either between manure application methods or injection bands. Furthermore, the alteration in soil NO3-N under injection did not lead to differential small grain growth. A 24 site on-farm study was conducted to assess potential differential growth of small grains following manure injection. This study found that soil NO3-N in the manure injection band compared to between bands was significantly increased in 13 of 24 sites and was on average 137% greater in-band at the 0-15 cm depth. This difference did not persist through small grain silage harvest as only 1 of 24 sites showed a significant difference in-band. Small grain maturity did not show any difference in 2021 due to late planting dates, but some differences were observed in the injection band compared to between bands one month after planting. As with soil NO3-N, these differences did not persist through silage harvest. Small grain forage quality parameters were not different in-band compared to between-band at harvest, while DM yield only differed in 3 of 24 sites, with 2 of those 3 sites being under wheat. The data presented in this dissertation indicates that manure injection causes differential soil NO3-N levels from banding. Accurately measuring soil NO3-N levels under injection was difficult due to the injection band being difficult to fully sample and suggests injected soil NO3-N levels were underestimated. No meaningful changes in crop growth were observed due to banding or different manure application methods. / Doctor of Philosophy / Manure injection is a more environmentally friendly method of manure application when compared to traditional surface broadcasting. While research is clear on the environmental benefits of manure injection, the agronomic benefits of injection are unclear. Therefore, this research aimed to compare soil nitrogen and crop response to manure injection. Manure injection did not result in consistently increased corn or small grain yields when compared to manure broadcasting. Soil nitrate was not typically altered between manure application methods, but this could have been due to our soil sampling method not sampling enough of the manure injection band. Manure injection did result in soil nitrate being concentrated in the area manure was injected. The elevated soil nitrate in the area manure was injected typically persisted 1-2 months after manure application but didn't persist to the end of the growing season. This early season increase in soil nitrate concentrations in the manure injection area did not result in differential small grain maturity in both a small-scale research plot study and a 24 site on-farm study. Three of 24 sites studied showed increased small grain yield when comparing the area manure was injected compared between injection bands, with two of these three sites being under wheat. This suggests small grain yield response to manure injection bands could be species dependent.

Page generated in 0.0742 seconds