• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Soil-Structure Interactionof Soil-Steel Composite Bridges : A Frequency Domain Approach Using PML Elements and Model Updating

FERNANDEZ BARRERO, DIEGO January 2019 (has links)
This master thesis covers the dynamic soil structure interaction of soil-steel culverts applyinga methodology based on the frequency domain response. At the first stage of this masterthesis, field tests were performed on one bridge using controlled excitation. Then, themethodology followed uses previous research, the field tests, finite element models (FEM)and perfectly matched layer (PML) elements.Firstly, a 2D model of the analysed bridge, Hårestorp, was made to compare the frequencyresponse functions (FRF) with the ones obtained from the field tests. Simultaneously, a 3Dmodel of the bridge is created for the following purposes: compare it against the 2D modeland the field tests, and to implement a model updating procedure with the particle swarmalgorithm to calibrate the model parameters. Both models use PML elements, which areverified against previous solution from the literature. The verification concludes that thePML behave correctly except for extreme parameter values.In the course of this master thesis, relatively advanced computation techniques were requiredto ensure the computational feasibility of the problem with the resources available.To do that, a literature review of theoretical aspects of parallel computing was performed, aswell as the practical aspects in Comsol. Then, in collaboration with Comsol Support and thehelp given by PDC at KTH it was possible to reduce the computational time to a feasiblepoint of around two weeks for the model updating of the 3D model.The results are inconclusive, in terms of searching for a perfectly fitting model. Therefore,further research is required to adequately face the problem. Nevertheless, there are some accelerometerswhich show a considerable level of agreement. This thesis concludes to discardthe 2D models due to their incapability of facing the reality correctly, and establishes a modeloptimisation methodology using Comsol in connection with Matlab.

Page generated in 0.0665 seconds