1 |
Extension of low voltage distribution by pure DC or mixed AC/DC parts for integration of solar PV and EV chargingJiang, Sofie January 2022 (has links)
This work examines the local distribution system in two residential areas in two Swedish towns, Oxelösund and Karlskrona, and studies how integration of PV systems and electric vehicle (EV) charging stations (CS) will affect the present distribution system. The research questions focus on the economic feasibility of a LVDC system, how it compares to a traditional LVAC (low voltage alternating current) system from an economic and technical perspective, and the possibilities a LVDC system brings to other DC component applications. The Swedish government aims to have a fossil-free vehicle fleet by 2030 and one of the measures is no fossil-fuel burning vehicle will be produced and sold in Sweden. This means the number of CS, and the charging infrastructure around these, need to be developed, to contribute to this goal and sustain this transformation. A connected issue is that updates on the regulations for non concession-regulated networks (IKN) in January 2022 extended the basic preconditions and allows possibilities for energy sharing between buildings. The new regulations are also in favor of micro-production and contribute to more decentralised systems. Connections of Renewable Energy Sources (RES) to the distribution system are expected to increase in the coming years. Grid-connected solar PV systems in Sweden have increased by 56% between 2019 and 2020, and at the same time EVs are becoming more apparent on the roads. These DC-(direct current) based technologies, and the possible need to strengthen local networks to accommodate new sources and loads, are bringing new opportunities for low voltage direct current (LVDC) based distribution systems. To answer the research questions, two different models with different concepts, parallel pure DC and parallel AC/DC, were built in simulation software. The conclusion of this study is that a traditional LVAC system is preferable over pure DC system from both economic and technical perspective for already connected areas, such as the two areas in this project. A parallel pure DC system might be preferable in newly built areas with substantial PV and EV, where exchange is wanted between buildings with separate AC grid connections. / Detta examnesarbetet undersöker det lokala distributionssystemet i två bostadsområden, i Oxelösund och Karlskrona. Arbetet fokuserar på hur (nya) anslutningar av solceller och laddstationer för elfordon (CS) kommer att påverka det nuvarande distributionsnätet i områdena. Forskningsfrågorna fokuserar på den ekonomiska genomförbarheten av ett LVDC-system, och hur det är jämfört med ett traditionellt LVAC-system (lågspänningsväxelström) ur ett ekonomiskt och tekniskt perspektiv, samt vilka möjligheter ett LVDC-system kan bidra med till andra DC-komponenttillämpningar. Den svenska regeringen ämnar ha en fossilfri fordonsflotta år 2030 och en av åtgärderna till målet är att sluta producera och sälja fossildrivna fordon i Sverige. Det innebär att antalet CS samt en laddingsinfrastruktur behöver utvecklas för att kunna bidra till målet och upprätthålla omställningen. De senaste uppdateringarna i regelverket för icke koncessionspliktiga nät (IKN) i januari 2022 vidgade de grundläggande förutsättningarna och bidrog till större möjligheter till energidelning mellan flera huskroppar. Det nya regelverket gynnar mikroproduktion och bidrar också till mer decentraliserade system. Anslutningar av RES till distributionsnätet förväntas öka under de kommande åren. Nätanslutna solcellsanläggningar i Sverige ökade med 56% mellan 2019 och 2020, samtidigt som det blir fler och fler elbilar på vägarna. Dessa DC-(likströms) baserade teknik kan öppna upp nya möjligheter för ett lågspänningslikström- (LVDC) baserad distributionssystem. För att besvara forskningsfrågorna byggdes två olika modeller med olika koncept, parallell ren DC och parallell AC/DC i simuleringsprogram. Slutsatsen av denna studien är att ett traditionellt LVAC-system är att föredra framför rent DC-system ur både ekonomiskt och tekniskt perspektiv för redan anslutna områden, som de två områdena i detta projekt. Ett parallellt rent DC-system kan vara att föredra i oanslutna områden, dvs nya bostadsområden under utveckling.
|
2 |
Collective PV nano-grid for households in Linga Linga : A Minor Field Study in MozambiqueDiaz Hjelm, Wilma, Olsson, Ellie January 2022 (has links)
About a third of Mozambique’s population has access to electricity, and the same number in rural areas, where most of the population lives, is down to 5 %. Small-sized off-grid solutions are economical alternatives to increase the electricity access rate in rural areas, and solar power is a common energy source due to price and weather conditions. Still, the economical aspect is the main hindrance to an increased electrification rate in Africa. This report aims to investigate how to make electricity affordable, in a sustainable way, by answering the main research question “What is the capability, economically, socially, and technically, for a shared nano off-grid system in the village Linga Linga?”. This was done by performing a Minor Field Study in the village Linga Linga, in southern Mozambique, with the help of the non-profit organization Project Vita. A collective nano-grid photovoltaic (PV) system was installed to electrify three households, including nine houses and eleven people, where the wage earners are all women. Before the construction and installment of the PV system, the first round of two interviews was conducted to investigate the energy situation for the households. After the interviews, the main components of the energy system: PV panels, inverter, charge controller, batteries, and cables, were sized and purchased. The energy system was sized to cover an energy demand of eleven Light-Emitting Diode (LED)-lights, four 3 W and seven 5 W, lit all day and all night, and three outlets for charging cell phones eight hours a day. This corresponds to an energy demand of 1,369 Wh per day, and a maximum power demand of 77 W. The resulting system cost is 87,570 Mozambique Metical (MZN), or 1,400 United States Dollars (USD). When calculating the technical lifetime to be 20 years, three of the main components must be replaced. That results in a system cost of 122,470 MZN, 1,960 USD, and the cost per wage earner of the participating households is 4.3 % of the average Mozambican’s annual salary. After the system had been running for about a week, the second round of interviews was carried out. On the same occasion, the households were informed about the maintenance and usage of the system, and they were handed manuals and contracts to sign. The interviewees reported that they had been working for more hours a day, handicrafts being their main source of income, thanks to the electric lights. The women were positive about collective ownership and sharing electricity and stated that they prefer a collective system to separate ones, even for the same cost. The interviews showed that the energy demand was lower than what the system was sized for, meaning that a system designed for the actual energy demand would have been both cheaper and smaller. However, the energy behavior could change with time as society develops and the users get more familiar with electricity. No clear answers were obtained regarding the willingness to pay (WTP) for the system, and the interpretation is that the household, in their current situation, cannot consider buying an energy system comparable to the prototype built for this report, due to the system cost. A collective solar nano-grid in rural Mozambique is concluded to be a well-functioning solution and one of the more economical electrification alternatives. Although the prototype in this study was too expensive for the participating households to pay for by themselves, it could support sustainable development and open for possibilities like increased productivity and income. Moreover, it could be expanded by connecting more loads and upscaling to further cut the system cost per person and increase the societal benefits. / Ungefär en tredjedel av Moçambiques befolkning har tillgång till elektricitet, och motsvarande andel på landsbygden, där majoriteten av befolkningen bor, är 5 %. Mindre off-grid lösningar är ekonomiska alternativ för att elektrifiera landsbygden, där solkraft är en vanlig energikälla på grund av det relativt låga priset och väderförhållandena med goda förutsättningar. Den ekonomiska aspekten är dock fortfarande det främsta hindret för att öka Afrikas elektrifieringsgrad. Den här rapporten syftar till att undersöka hur elektricitet kan göras tillgänglig för alla, på ett hållbart sätt, genom att besvara frågeställningen ”Vad är möjligheterna, ekonomiskt, socialt, och tekniskt, för ett delat nano off-grid system i byn Linga Linga?”. Detta utreds genom att genomföra en Minor Fields Study i byn Linga Linga i södra Moçambique med hjälp av välgörenhetsorganisationen Project Vita. Ett nano-nätsystem drivet av solceller installerades, innefattande tre hushåll med nio hus och elva personer, med endast kvinnliga inkomsttagare. Innan byggnationen av solcellssystemet genomfördes intervjuer för att undersöka hushållens energisituation. De mest fundamentala systemkomponenterna; solcellspaneler, växelriktare, solcellsregulator, batterier och kablar, dimensionerades och införskaffades efter intervjuerna. Energisystemet utformades efter ett energibehov på elva Light-Emitting Diode (LED)-lampor, varav fyra 3 W och sju 5 W, tända dygnet runt, och tre uttag för att ladda mobiltelefoner åtta timmar om dagen. Detta motsvarar ett energibehov på 1,369 Wh per dag, och ett maximalt effektbehov på 77 W per dag. Den resulterande systemkostnaden är 87 570 Mozambique Metical (MZN), eller 1 400 United States Dollar (USD). För att räkna om systemkostnaden för en teknisk livslängd på 20 år måste tre av systemets huvudkomponenter bytas ut, vilket resulterar i en systemkostnad på 122 470 MZN, 1 960 USD. Kostnaden per inkomsttagare i de deltagande hushållen utgör då 4,3 % av den årliga moçambikiska medelinkomsten. När solcellssystemet varit i gång i en vecka utfördes en andra omgång intervjuer. I samband med detta informerades hushållen om skötsel och användning av systemet, och mottog manualer och kontrakt. Det framkom att kvinnorna, tack vare den elektriska belysningen, hade kunnat arbeta längre på kvällarna med sina hantverk - deras främsta inkomstkälla. De var positiva till det kollektiva ägandet av systemet och sade sig föredra ett delat system framför varsitt separat, även för samma kostnad per person. Intervjuerna visade att hushållens energikonsumtion var mindre än systemet var designat för. Ett system anpassat efter det verkliga energibehovet hade därmed blivit både mindre och billigare. Energianvändandet kan dock förändras i takt med samhällsutveckling och användarnas bekantskap med elektricitet. Inga tydliga svar angående betalningsvilja (WTP) för systemet mottogs, och tolkningen är att hushållen, i deras nuvarande situation, inte kan tänka sig köpa ett energisystem som är jämförbart med studiens prototyp, på grund av den höga systemkostnaden. Ett soldrivet kollektivt nano-nät på Moçambiques landsbygd bedöms vara en välfungerande elektrifieringslösning och ett av de mest ekonomiska elektrifieringsalternativen. Fastän studiens prototyp var för dyr för att de deltagande hushållen kan det ses stödja en hållbar utveckling genom att öppna upp för möjligheter såsom ökad produktivitet och inkomst. Systemet skulle även kunna expanderas genom att koppla in fler eller större last, och byggas i större skala för att dra ner systemkostnaden per person och öka samhällsnyttan.
|
3 |
Design of a Sustainable Energy System for a Community Center in rural Mozambique : A Minor Field Study in MozambiqueSäll Magnusson, Emilia, Hahn, Melchior January 2023 (has links)
Access to energy is an important part in the development of most countries and societies, linked to both social and economic growth. Nevertheless, 70% of the population in sub-Saharan Africa does not have access to electricity, which brings consequences to several of these areas. A country to which this largely applies is Mozambique, where the percentage of the country's population that had access to electricity in 2021 was only 31.5%. Working towards the goal of electrifying the least developed countries in a sustainable way, solar technology is believed to have potential to play a vital role, as 60% of the best terrestrial-based global solar resources of the world are located in sub-Saharan Africa. Mini-grids and solar off-grid solutions can further help address the issue of lack of electricity access, especially in rural areas. In previous studies carried out in the village Linga Linga in Mozambique, off-grid solar solutions have been implemented for a small energy demand. With the intention of giving a larger part of the village’s population access to energy services such as light, phone charging and computer access, this thesis will investigate and design an off-grid PV system for a community center in the village. The main research question that will be answered in this report is "How can solar energy be used to supply a community center in the village Linga Linga with a low-cost, reliable and sustainable electricity supply?". To answer the research question, relevant data and information were collected through a literature study on the situation in Mozambique, off-grid PV systems and on PV system components such as inverters, batteries, PV panels and charge controllers. Interviews were also carried out in the village to be able to calculate the expected energy demand of the community center. The community center’s daily energy demand for weekends was estimated to be the highest, at 7 544 Wh with a maximum power demand of 1 230 W. To meet this requirement, the main components were dimensioned so that the system had a maximum power of 2 000 W, a battery storage capacity of 750 Ah and a system voltage of 24 V. For this system, the approximate total cost of the main components was calculated to 56 120 SEK. / Tillgång till energi är en viktig del i utvecklingen av de flesta länder och samhällen, kopplat till både social och ekonomisk tillväxt. Ändå har 70% av befolkningen i Subsahariska Afrika inte tillgång till el, vilket får konsekvenser för flera av dessa områden. Ett land som detta till stor del gäller är Mozambique, där andelen av landets befolkning som hade tillgång till el 2021 endast var 31.5%. I arbetet mot målet att elektrifiera de minst utvecklade länderna på ett hållbart sätt tros solteknik ha potential att spela en avgörande roll, eftersom 60% av världens bästa jordbaserade globala solresurser finns i Subsahariska Afrika. Mininät och solenergilösningar utanför nätet kan ytterligare hjälpa till att lösa problemet med bristande tillgång till elektricitet, särskilt på landsbygden. I tidigare studier utförda i byn Linga Linga i Mozambique har off-grid solenergilösningar implementerats för att tillgodose energibehov för små system. Med avsikten att ge en större del av byns befolkning tillgång till energitjänster som ljus, telefonladdning och datoråtkomst, kommer detta examensarbete att undersöka och designa ett off-grid solcellssystem för ett kultur- och fritidscentrum i byn. Den huvudsakliga forskningsfrågan som kommer att besvaras i denna rapport är "Hur kan solenergi användas för att förse ett kultur- och fritidscentrum i byn Linga Linga med en låg kostnad, pålitlig och hållbar elförsörjning?". För att svara på forskningsfrågan samlades relevant data och information in genom en litteraturstudie om situationen i Mozambique, off-grid solcellssystem och om systemkomponenter såsom växelriktare, batterier, solpaneler och laddningsregulatorer. Intervjuer genomfördes även i byn för att kunna beräkna det förväntade energibehovet för kultur- och fritidscentrumet. Kultur- och fritidscentrumets dagliga energibehov för helger uppskattades vara högst, 7 544 Wh med ett maximalt effektbehov på 1 230 W. För att möta detta krav valdes huvudkomponenterna så att systemet hade en maximal effekt på 2 000 W, en batterilagringskapacitet på 750 Ah och en systemspänning på 24 V. För detta system beräknades den ungefärliga totalkostnaden för huvudkomponenterna till 56 120 SEK.
|
Page generated in 0.0527 seconds