Spelling suggestions: "subject:"solar fuel""
1 |
Photoinduced Electron Transfer Systems For Generation Of Strong Reductants / Oxidants And Their Applications In Solar Fuel GenerationJanuary 2015 (has links)
1 / Bing Shan
|
2 |
Molecular hybrid photocathodes based on silicon for solar fuel synthesisLeung, Jane Jing January 2019 (has links)
Artificial photosynthesis is broadly defined as the process of solar energy conversion into chemical fuels and represents a promising route towards alleviating the global energy crisis. In this context, the development of photocathodes for the use in photoelectrochemical cells is an attractive approach for the storage of solar energy in the form of a chemical energy carrier (e.g. H$_{2}$ and CO$_{2}$-reduction products from H$_{2}$O and CO$_{2}$). However, molecular catalyst-based photocathodes remain scarcely reported and typically suffer from low efficiencies and/or stabilities due to inadequate strategies for interfacing the molecular component with the light-harvesting material, with benchmark systems continuing to rely on precious metal components. In this thesis, the straightforward preparation of a p-silicon|mesoporous titania|molecular catalyst photocathode assembly that is active towards proton reduction in aqueous media is first established. The mesoporous TiO$_{2}$ scaffold acts as an electron shuttle between the silicon and the catalyst, while also stabilising the silicon from passivation and enabling a high loading of molecular catalysts. When a Ni bis(diphosphine)-based catalyst is anchored on the surface of the electrode, a catalytic onset potential of +0.4 V vs. RHE and a high turnover number of 1 $\times$ 10$^{3}$ was obtained from photoelectrolysis under UV-filtered simulated solar irradiation at 1 Sun after 24 hours. Notwithstanding its aptitude for molecular catalyst immobilisation, the Si|TiO$_{2}$ photoelectrode showed great versatility towards different types of catalysts and pH conditions, highlighting the flexible platform it represents for many potential reductive catalysis transformations. The Si|TiO$_{2}$ scaffold was extended towards solar CO$_{2}$ reduction via the immobilisation of a novel phosphonated cobalt bis(terpyridine) catalyst to achieve the first precious metal-free, CO$_{2}$-reducing molecular hybrid photocathode. Reducing CO$_{2}$ in both organic-water and purely aqueous conditions, the activity of this photocathode was shown to be affected by its environment and reached record turnover numbers for CO production by a molecular photocathode under optimal conditions, maintaining stable activity for more than 24 hours. Critically, in-depth electrochemical and in situ resonance Raman and infrared spectroelectrochemical investigations provided key insights into the nature of the surface-bound Co complex under reducing conditions. While demonstrating the power and precision offered by such in situ spectroelectrochemical techniques, these studies ultimately alluded to a catalytic mechanism that contrasts with that reported for the in-solution (homogeneous) catalyst. Overall, this affords a distinct mechanistic pathway that unlocks an earlier catalytic onset and enables photoelectrochemical activity. Finally, in the context of improving product selectivity in molecular-based CO$_{2}$ reduction, polymers based on the cobalt bis(terpyridine) motif were synthesised and immobilised on inverse opal-type electrodes designed specifically to accommodate large molecules. Rational design of the polymers' co-monomers was aimed towards the provision of an artificial environment for the active complex that would influence product selectivity, which was ultimately demonstrated by the improvement of a H$_{2}$:CO product ratio of 1:2 (molecule) to 1:6 (polymer). Further studies of this all-in-one system included modulating its degree of cross-linkage as well as a CO$_{2}$ reducing demonstration photocathode on a Si|inverse-opal TiO$_{2}$ scaffold.
|
3 |
Perovskite Materials Design for Two-Step Solar-Thermochemical Redox CyclesVieten, Josua 27 May 2019 (has links)
Solar-thermochemische Redoxzyklen stellen eine vielversprechende Technologieoption zur Nutzung und Umwandlung von erneuerbaren Energiequellen dar. Durch Reduktion von Metalloxiden bei hoher Temperatur und/oder niedrigem Sauerstoffpartialdruck kann ein Material in einen Zustand
überführt werden, der dazu geeignet ist, Sauerstoff aus einem Gasstrom zu entfernen oder Wasser bzw. Kohlenstoffdioxid zu spalten. Dadurch ist es möglich, Luft zu zerlegen oder Sauerstoff zu pumpen, sowie sogenannte solare Brennstoffe zu erzeugen. Eine besonders vielversprechende Materialklasse stellen dabei die Perowskite dar. Diese Materialien bilden stabile Phasen mit sehr unterschiedlichen Zusammensetzungen. In dieser Arbeit wird gezeigt, wie diese Perowskit-Oxide in
thermochemischen Redoxzyklen verwendet werden können und die Mechanismen hinter diesen Redoxreaktionen werden mit in-situ-Röntgenuntersuchungen aufgeklärt. Es wird auch gezeigt, dass die kinetischen Parameter der Oxidationsreaktion sehr vielversprechend sind. Zudem wird demonstriert, wie feste Lösungen aus Perowskiten in einem weiten Bereich verschiedener Zusammensetzungen hergestellt werden können und wie die Zusammensetzung der Perowskite die Phasenbildung und Stabilität beinflusst. Mit diesem Wissen wird ein Schwerpunkt dieser Arbeit auf die thermodynamischen Eigenschaften dieser Perowskite gelegt. Eine neue Methode der gezielten Materialentwicklung wird demonstriert, welche darauf basiert, den Toleranzfaktor und die thermodynamischen Eigenschaften der Perowskite gezielt einzustellen. Sowohl experimentelle, als auch theoretische Untersuchungen werden durchgeführt, letzere basierend auf Dichtefunktionaltheorie (DFT) im Rahmen von „Materials Project“. Über 240 Perowskit-Brownmillerit-Paare wurden untersucht. Detaillierte Modelle wurden entwickelt, um die thermodynamischen Eigenschaften solcher fester Lösungen aus Perowskiten als eine Funktion der Temperatur, des Sauerstoffpartialdrucks, und der Sauerstoff-Fehlstellenkonzentration 𝛿 zu beschreiben. Mit Hilfe dieser Funktionen wurde ein interaktiver Beitrag im Rahmen von Materials Project entwickelt, mit dem Materialeigenschaften in einem weiten Bereich verschiedener Bedingungen untersucht werden können. Darin ist auch eine Perowskit-Suchmaschine enthalten. Diese verwendet ein vereinfachtes Prozessmodell, um den materialspezifischen Energiebedarf von Redoxzyklen auszuwerten und ermöglicht es so, das effizienteste Material basierend auf den Prozessbedingungen auszuwählen. Es konnten neue Redoxmaterialien zur Anwendung in thermochemischen Kreisprozessen identifiziert werden und es wurde festgestellt, dass Perowskite die Effizienz der solaren Brennstofferzeugung bei vergleichsweise niedrigen Reduktionstemperaturen von 1300-1400 °C erhöhen können. So soll eine höhere Reaktorlebensdauer erreicht werden. Es wird auch diskutiert, welche Faktoren die Prozesseffizienz beeinflussen und es werden Ideen präsentiert, welche Schritte nötig sind, um eine kommerzielle Nutzung zu ermöglichen. Der wichtigste Faktor ist dabei die Wärmerückgewinnungseffizienz zwischen Feststoffen. Durch die Veröffentlichung aller Daten im Rahmen von MPContribs/Materials Project durch das Erstellen von interaktiven Graphen wird eine wertvolle Ressource zur schnelleren und zielgerichteten Materialentwicklung bereitgestellt. / Solar-thermochemical redox cycles are a promising technological option in the framework of utilization and conversion of renewable energy. By reducing metal oxides at high temperature and/or low oxygen partial pressure, one can generate a material in a state which can be used to capture oxygen from a gas stream or split water or carbon dioxide. By this means, air can be separated, oxygen can be pumped, or so-called solar fuels can be generated. One especially attractive materials class for application in such redox cycles is constituted by perovskites. These materials form stable phases over a large compositional range. Within this work, we show how these perovskite oxides can be applied in thermochemical redox cycles and study the mechanisms behind these redox reactions using in-situ X-Ray techniques. We also show that the kinetic properties of the oxidation reaction are very appealing. It is furthermore presented how perovskite solid solutions can be formed over a large compositional range and how phase formation and stability are affected by the perovskite composition. Based on this knowledge, the focus of this work is set on the materials thermodynamics. A new method of rational perovskite materials design is developed by adjusting the tolerance factor of the perovskites and their thermodynamics. Both experimental and theoretical materials development are conducted, the latter based on density functional theory (DFT) within the framework of the online resource “Materials Project”. Over 240 perovsite-brownmillerite pairs are included in the search. Detailed models describing the thermodynamics of such perovskite solid solutions are established which allow describing the perovskite redox properties as a function of the temperature, oxygen partial pressure, and oxygen non-stoichiometry 𝛿. Using these functions, we developed an interactive tool within the framework of Materials Project, which can be used to model materials properties for a large range of conditions and also serves as a perovskite search engine. This search engine uses a simplified process model to evaluate the material-specific energy demand of a thermochemical redox process and allows finding the most efficient materials choice for a large range of different operational parameters. We could identify new redox materials for application in such processes and found that perovskites can lead to more efficient thermochemical fuels production than the state of the art, especially if the reduction temperature is lowered to 1300-1400 °C to reach higher reactor longevity. It is also discussed which factors affect the overall process efficiency to which extent, and suggestions are given which steps are necessary for a commercialization of such redox processes. The most important factor is the solid-solid heat recovery efficiency. By making all this data publicly available in the framework of MPContribs/Materials Project through providing user-controlled interactive graphs, we are providing a valuable resource for accelerating the discovery and use of new redox materials.
|
4 |
Relation between hydrogen production and photosynthesis in the green algae Chlamydomonas reinhardtiiBasu, Alex January 2015 (has links)
The modernized world is over-consuming low-cost energy sources that strongly contributes to pollution and environmental stress. As a consequence, the interest for environmentally friendly alternatives has increased immensely. One such alternative is the use of solar energy and water as a raw material to produce biohydrogen through the process of photosynthetic water splitting. In this work, the relation between H2-production and photosynthesis in the green algae Chlamydomonas reinhardtii was studied with respect to three main aspects: the establishment of prolonged H2-production, the involvement of PSII in H2-production and the electron pathways associated with PSII during H2-production. For the first time, this work reveals that PSII plays a crucial role throughout the H2-producing phase in sulfur deprived C. reinhardtii. It further reveals that a wave-like fluorescence decay kinetic, before only seen in cyanobacteria, is observable during the H2-producing phase in sulfur deprived C. reinhardtii, reflecting the presence of cyclic electron flows also in green algae.
|
5 |
Understanding the Limitations of Photoelectrochemical Water SplittingThorne, James E. January 2018 (has links)
Thesis advisor: Dunwei Wang / Artificial photosynthesis is achieved by placing a semiconductor in water, where photoexcited charges generate a photovoltage at the surface of the semiconductor. However, solar to fuel efficiencies of earth abundant metal oxides and metal nitrides remain limited by their low photovoltages. Many different treatments have been used to improve the photovoltages of semiconductors, such as photocharging, surface regrowths, or the addition of heterogeneous catalysts. However, in these treatments, it remains unclear whether the enhanced photovoltage arises from improved kinetics or energetics. In many of the following studies, the surface kinetics of different semiconductors are measured in order to quantify how surface kinetics are related to the photovoltage of these materials. Different spectroscopic measurements are made along with detailed analysis of the Fermi level and quasi Fermi level in order to corroborate the kinetic data with energetic data. Together, this dissertation explores a multitude of methods and procedures that demonstrate how the photovoltage of semiconductors can be understood and manipulated for photoelectrochemial artificial photosynthesis. / Thesis (PhD) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
6 |
Structural and Photoelectrochemical Characterization of Gallium Phosphide Semiconductors Modified with Molecular Cobalt CatalystsJanuary 2018 (has links)
abstract: The molecular modification of semiconductors has applications in energy
conversion and storage, including artificial photosynthesis. In nature, the active sites of
enzymes are typically earth-abundant metal centers and the protein provides a unique
three-dimensional environment for effecting catalytic transformations. Inspired by this
biological architecture, a synthetic methodology using surface-grafted polymers with
discrete chemical recognition sites for assembling human-engineered catalysts in three-dimensional
environments is presented. The use of polymeric coatings to interface cobalt-containing
catalysts with semiconductors for solar fuel production is introduced in
Chapter 1. The following three chapters demonstrate the versatility of this modular
approach to interface cobalt-containing catalysts with semiconductors for solar fuel
production. The catalyst-containing coatings are characterized through a suite of
spectroscopic techniques, including ellipsometry, grazing angle attenuated total reflection
Fourier transform infrared spectroscopy (GATR-FTIR) and x-ray photoelectron (XP)
spectroscopy. It is demonstrated that the polymeric interface can be varied to control the
surface chemistry and photoelectrochemical response of gallium phosphide (GaP) (100)
electrodes by using thin-film coatings comprising surface-immobilized pyridyl or
imidazole ligands to coordinate cobaloximes, known catalysts for hydrogen evolution.
The polymer grafting chemistry and subsequent cobaloxime attachment is applicable to
both the (111)A and (111)B crystal face of the gallium phosphide (GaP) semiconductor,
providing insights into the surface connectivity of the hard/soft matter interface and
demonstrating the applicability of the UV-induced immobilization of vinyl monomers to
a range of GaP crystal indices. Finally, thin-film polypyridine surface coatings provide a
molecular interface to assemble cobalt porphyrin catalysts for hydrogen evolution onto
GaP. In all constructs, photoelectrochemical measurements confirm the hybrid
photocathode uses solar energy to power reductive fuel-forming transformations in
aqueous solutions without the use of organic acids, sacrificial chemical reductants, or
electrochemical forward biasing. / Dissertation/Thesis / Doctoral Dissertation Biochemistry 2018
|
7 |
Synthetic biology approaches to bio-based chemical productionTorella, Joseph Peter January 2014 (has links)
Inexpensive petroleum is the cornerstone of the modern global economy despite its huge environmental costs and its nature as a non-renewable resource. While ninety percent of petroleum is ultimately used as fuel and can in principle be replaced by sources of renewable electricity, ten percent is used as a feedstock to produce societally important chemicals that cannot currently be made at a reasonable cost through alternative processes. In this dissertation, I will discuss my efforts, together with several colleagues, to apply synthetic biology approaches to the challenge of producing renewable petrochemical replacements. In Chapter 2, I discuss our efforts to engineer E. coli to produce fatty acids with a wide range of chain lengths at high yield, thereby providing an alternative platform for the production of diverse petrochemicals. In Chapter 3, I describe a novel method of DNA assembly that we developed to facilitate synthetic biology efforts such as those in Chapter 2. This method is capable of simultaneously assembling multiple DNA pieces with substantial sequence homology, a common challenge in synthetic biology. In Chapter 4, I discuss the development of a "bionic leaf": a hybrid microbial-inorganic catalyst that marries the advantages of photovoltaic-based light capture and microbial carbon fixation to achieve solar biomass yields greater than those observed in terrestrial plants. This technology offers a potentially low-cost alternative to photosynthesis as a source of biomass and derived chemicals and fuels. The work described in this dissertation demonstrates the capacity of synthetic biology to address the problem of renewable chemical production, and offers proof of principle demonstrations that both the scope and efficiency of biological chemical production may be improved.
|
8 |
Design and Evaluation of a Concentrating Solar Power System with Thermochemical Water Splitting Process for the Co-production of Hydrogen and ElectricityJanuary 2018 (has links)
abstract: Thermodynamic development and balance of plant study is completed for a 30 MW solar thermochemical water splitting process that generates hydrogen gas and electric power. The generalized thermodynamic model includes 23 components and 45 states. Quasi-steady state simulations are completed for design point system sizing, annual performance analysis and sensitivity analysis. Detailed consideration is given to water splitting reaction kinetics with governing equations generalized for use with any redox-active metal oxide material. Specific results for Ceria illustrate particle reduction in two solar receivers for target oxygen partial pressure of 10 Pa and particle temperature of 1773 K at a design point DNI of 900 W/m2. Sizes of the recuperator, steam generator and hydrogen separator are calculated at the design point DNI to achieve 100,000 kg of hydrogen production per day from the plant. The total system efficiency of 39.52% is comprised of 50.7% hydrogen fraction and 19.62% electrical fraction. Total plant capital costs and operating costs are estimated to equate a hydrogen production cost of $4.40 per kg for a 25-year plant life. Sensitivity analysis explores the effect of environmental parameters and design parameters on system performance and cost. Improving recuperator effectiveness from 0.7 to 0.8 is a high-value design modification resulting in a 12.1% decrease in hydrogen cost for a modest 2.0% increase in plant $2.85M. At the same time, system efficiency is relatively inelastic to recuperator effectiveness because 81% of excess heat is recovered from the system for electricity production 39 MWh/day and revenue is $0.04 per kWh. Increasing water inlet pressure up to 20 bar reduces the size and cost of super heaters but further pressure rises increasing pump at a rate that outweighs super heater cost savings. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2018
|
9 |
Hybrid Materials and Interfaces for Artificial Photosynthetic AssembliesJanuary 2020 (has links)
abstract: Chemical modification of (semi)conducting surfaces with soft-material coatings containing electrocatalysts provides a strategy for developing integrated constructs that capture, convert, and store solar energy as fuels. However, a lack of effective strategies for interfacing electrocatalysts with solid-state materials, and an incomplete understanding of performance limiting factors, inhibit further development. In this work, chemical modification of a nanostructured transparent conductive oxide, and the III-V semiconductor, gallium phosphide, is achieved by applying a thin-film polymer coating containing appropriate functional groups to direct, template, and assemble molecular cobalt catalysts for activating fuel-forming reactions. The heterogeneous-homogeneous conducting assemblies enable comparisons of the structural and electrochemical properties of these materials with their homogeneous electrocatalytic counterparts. For these hybrid constructs, rational design of the local soft-material environment yields a nearly one-volt span in the redox chemistry of the cobalt metal centers. Further, assessment of the interplay between light absorption, charge transfer, and catalytic activity in studies involving molecular-catalyst-modified semiconductors affords models to describe the rates of photoelectrosynthetic fuel production as a function of the steady-state concentration of catalysts present in their activated form. These models provide a conceptual framework for extracting kinetic and thermodynamic benchmarking parameters. Finally, investigation of molecular ‘proton wires’ inspired by the Tyrosine Z-Histidine 190 redox pair in Photosystem II, provides insight into fundamental principles governing proton-coupled electron transfer, a process essential to all fuel-forming reactions relevant to solar fuel generation. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2020
|
10 |
Production de combustibles solaires synthétiques par cycles thermochimiques de dissociation de l'eau et du CO2 / Synthetic solar fuel production from H 2 O and CO 2 dissociation using two-step thermochemical cyclesLeveque, Gael 16 October 2014 (has links)
Ce travail de thèse porte sur l’étude de la réduction de CO 2 et H 2 O en CO et H 2 au moyen de cycles thermochimiques. Ces cycles utilisent des oxydes métalliques pour réaliser ces réductions en deux étapes, permettant de diminuer la température nécessaire. Dans une première étape endothermique, l’oxyde métallique est réduit à haute température (>1200°C) grâce à un apport d’énergie solaire concentrée. Dans une seconde étape exothermique réalisée à plus basse température (<1200°C), cette espèce réduite est ré-oxydée en présence d’eau ou de CO 2 , produisant H 2 ou CO et régénérant l’oxyde métallique pour un autre cycle. Le mélange de H 2 et CO (syngas), ainsi produit uniquement grâce à de l’énergie solaire peut ensuite être transformé en carburant liquide conventionnel par un procédé catalytique de type Fischer-Tropsch. Cette étude s’intéresse particulièrement aux cycles à base d’oxydes volatiles, ZnO/Zn et SnO 2 /SnO, dont le produit de la première étape de réduction est sous forme gazeuse à la température de réaction, puis se condense sous forme de nanoparticules. Tout d’abord, des moyens et méthodes ont été développés pour l’étude de la cinétique des réactions de réduction à hautes températures, en particulier une méthode inverse utilisant la mesure en ligne de l’oxygène produit dans un réacteur solaire, et un dispositif de thermogravimétrie solaire. Par ailleurs, différents moyens de diminuer la température des réactions de réduction ont été étudiés, à savoir la diminution de la pression et l’emploi d’un agent réducteur carboné. L’impact de la diminution de la pression sur la cinétique de réduction a été quantifié pour SnO 2 et ZnO.Une étude de l’évolution physico-chimique de poudres de SnO durant la deuxième étape d’oxydation du cycle a ensuite été réalisée, montrant l’importance de la réaction de dismutation de SnO en Sn et SnO 2 sur la réactivité des poudres dans la gamme de température étudiée. / This PhD thesis focuses on the study of the CO2 and H2O reduction into CO and H2 using thermochemical cycles. These cycles use metal redox pairs for stepwise reduction at lower temperature. The first step consists of the endothermic high temperature reduction of the metal oxide (>1200°C) using concentrated solar energy. The second step, operated at a lower temperature (<1200°C), uses the reduced specie to reduce CO2 or H2O, yielding CO or H2 and regenerating the metal oxide. The CO and H2 mixture (syngas), produced using solar energy, can then be converted into liquid fuel using a conventional Fischer-Tropsch catalytic process. The study considers more specifically the volatile oxide cycles, ZnO/Zn and SnO2/SnO, for which the reduced specie is obtained in gaseous phase at the reaction temperature, and is then condensed as nanoparticles. First, means and methods for studying the kinetics of reduction reactions at high temperatures were developed, namely an inverse method based on the online analysis of O2 production in a solar reactor and a solar-driven thermogravimeter. In addition, the study of reduced pressure operation and the use of a carbonaceous reducer were considered as efficient means to decrease the operating temperature and to promote a fast reaction. The impact of reduced pressure was quantified for SnO2 and ZnO reduction. A study of the evolution of the morphology and chemistry of the SnO powder during the second oxidation step was then conducted, emphasizing the importance of SnO disproportionation on the powder reactivity.
|
Page generated in 0.0736 seconds