• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 165
  • 25
  • 22
  • 17
  • 14
  • 12
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 314
  • 314
  • 155
  • 105
  • 64
  • 61
  • 48
  • 47
  • 45
  • 44
  • 41
  • 38
  • 35
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Combining of renewable energy plants to improve energy production stability

Broders, Adam C. January 2008 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: wind energy, solar energy, stability analysis, renewable. Includes bibliographical references (leaves 99-100).
92

Experimental Demonstration of Photovoltaic Powered Solar Cooling With Ice Storage

January 2012 (has links)
abstract: The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC compressor that operates a conventional HVAC system paired with a second evaporator submerged within a thermal storage tank. The thermal storage is a 0.284m3 or 75 gallon freezer filled with Cryogel balls, submerged in a weak glycol solution. It is paired with its own separate air handler, circulating the glycol solution. The refrigerant flow is controlled by solenoid valves that are electrically connected to a high and low temperature thermostat. During daylight hours, the PV modules run the DC compressor. The refrigerant flow is directed to the conventional HVAC air handler when cooling is needed. Once the desired room temperature is met, refrigerant flow is diverted to the thermal storage, storing excess PV power. During peak energy demand hours, the system uses only small amounts of grid power to pump the glycol solution through the air handler (note the compressor is off), allowing for money and energy savings. The conventional HVAC unit can be scaled down, since during times of large cooling demands the glycol air handler can be operated in parallel with the conventional HVAC unit. Four major test scenarios were drawn up in order to fully comprehend the performance characteristics of the HACS. Upon initial running of the system, ice was produced and the thermal storage was charged. A simple test run consisting of discharging the thermal storage, initially ~¼ frozen, was performed. The glycol air handler ran for 6 hours and the initial cooling power was 4.5 kW. This initial test was significant, since greater than 3.5 kW of cooling power was produced for 3 hours, thus demonstrating the concept of energy storage and recovery. / Dissertation/Thesis / M.S. Mechanical Engineering 2012
93

Optimalizace využití elektrické energie vyrobené domácí solární elektrárnou / Optimization of the electrical energy production of the domestic solar power plant

CICHRA, Karel January 2013 (has links)
The subject of this thesis is to design, construct and test the control system based on single-chip microcomputer Atmel AVR for a small solar power plant. The proposed system will enable to optimize the use of electricity generated by solar power installed at the family house. The objective is to minimize the amount of power sent to the distribution network and maximize the reduction of purchase of electricity. The first section provides an overview and analysis of several possible solutions and their economic comparison. The next section describes basic characteristic of the hardware components and the source code of programs with additonal comments. The final section presents the results of test operation a futher potential improvements of the system for future expansion and better operation efficiency.
94

A Steady State Thermodynamic Model of Concentrating Solar Power with Thermochemical Energy Storage

January 2017 (has links)
abstract: Fluids such as steam, oils, and molten salts are commonly used to store and transfer heat in a concentrating solar power (CSP) system. Metal oxide materials have received increasing attention for their reversible reduction-oxidation (redox) reaction that permits receiving, storing, and releasing energy through sensible and chemical potential. This study investigates the performance of a 111.7 MWe CSP system coupled with a thermochemical energy storage system (TCES) that uses a redox active metal oxide acting as the heat transfer fluid. A one-dimensional thermodynamic model is introduced for the novel CSP system design, with detailed designs of the underlying nine components developed from first principles and empirical data of the heat transfer media. The model is used to (a) size components, (b) examine intraday operational behaviors of the system against varying solar insolation, (c) calculate annual productivity and performance characteristics over a simulated year, and (d) evaluate factors that affect system performance using sensitivity analysis. Time series simulations use hourly direct normal irradiance (DNI) data for Barstow, California, USA. The nominal system design uses a solar multiple of 1.8 with a storage capacity of six hours for off-sun power generation. The mass of particles to achieve six hours of storage weighs 5,140 metric tonnes. Capacity factor increases by 3.55% for an increase in storage capacity to eight hours which requires an increase in storage volume by 33% or 737 m3, or plant design can be improved by decreasing solar multiple to 1.6 to increase the ratio of annual capacity factor to solar multiple. The solar reduction receiver is the focal point for the concentrated solar energy for inducing an endothermic reaction in the particles under low partial pressure of oxygen, and the reoxidation reactor induces the opposite exothermic reaction by mixing the particles with air to power an air Brayton engine. Stream flow data indicate the solar receiver experiences the largest thermal loss of any component, excluding the solar field. Design and sensitivity analysis of thermal insulation layers for the solar receiver show that additional RSLE-57 insulation material achieves the greatest increase in energetic efficiency of the five materials investigated. / Dissertation/Thesis / Masters Thesis Civil and Environmental Engineering 2017
95

Techno-Economic Analysis of a Concentrating Solar Power Plant Using Reduction/Oxidation Metal Oxides for Thermochemical Energy Storage

January 2017 (has links)
abstract: Concentrating Solar Power (CSP) plant technology can produce reliable and dispatchable electric power from an intermittent solar resource. Recent advances in thermochemical energy storage (TCES) can offer further improvements to increase off-sun operating hours, improve system efficiency, and the reduce cost of delivered electricity. This work describes a 111.7 MWe CSP plant with TCES using a mixed ionic-electronic conducting metal oxide, CAM28, as both the heat transfer and thermal energy storage media. Turbine inlet temperatures reach 1200 °C in the combined cycle power block. A techno-economic model of the CSP system is developed to evaluate design considerations to meet targets for low-cost and renewable power with 6-14 hours of dispatchable storage for off-sun power generation. Hourly solar insolation data is used for Barstow, California, USA. Baseline design parameters include a 6-hour storage capacity and a 1.8 solar multiple. Sensitivity analyses are performed to evaluate the effect of engineering parameters on total installed cost, generation capacity, and levelized cost of electricity (LCOE). Calculated results indicate a full-scale 111.7 MWe system at $274 million in installed cost can generate 507 GWh per year at a levelized cost of $0.071 per kWh. Expected improvements to design, performance, and costs illustrate options to reduce energy costs to less than $0.06 per kWh. / Dissertation/Thesis / Masters Thesis Civil, Environmental and Sustainable Engineering 2017
96

A study of modelling the energy system of an ice rink sports facility : Modelling the heating and cooling of ABB arena syd and implementation of renewable energy sources using TRNSYS

Lind, Philip January 2018 (has links)
Environmental issues are important challenges for today’s society. Lots of the energy used by humans comes from fossil energy sources resulting in the environmental threats. A considerable amount of this energy is used in the building sector. Industrial buildings and sports facilities are large users of energy and thus becomes very interesting in an optimization point of view. Modelling of the systems allows for cheap and effective optimizing of the energy usage and effectivity measures can be investigated and implemented. This study creates a model of the indoor ice rink arena of ABB arena syd in Västerås using TRNSYS as the main software for simulation. Focus is placed on the heating of the arena through heat pumps and district heating, and cooling of the ice in the arena using cooling machines. The effect of PV as well as a battery storage in the arena is also investigated as an effectiveness scenario. The results from the study revealed that it is possible to simulate the heating demand for the arena, accurately identifying the normal demand as well as the instances when the demand peaks and the magnitude of the peaks. It is also possible to simulate the cooling demand for the ice over extended time periods. However, this study could not identify the peaks for cooling demand. It is also beneficial for the system to install PV, but not a battery storage. With current price levels for electricity it is however not a very beneficial deal. With higher electricity prices the investment is preferable. The study also concludes that TRNSYS can be used for modelling an ice rink sports arena, however it leaves room for improvement on that aspect.
97

Avaliação do ciclo de vida de potenciais rotas de produção de hidrogênio: estudo dos sistemas de gaseificação da biomassa e de energia solar fotovoltaica / Life cycle assessment of hydrogen production routes: study of gaseification systems and photovoltaic solar power

FUKUROZAKI, SANDRA H. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:33:38Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:05:54Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
98

Managing Solar Uncertainty in Neighboring Systems With Stochastic Unit Commitment

January 2013 (has links)
abstract: As renewable energy becomes more prevalent in transmission and distribution systems, it is vital to understand the uncertainty and variability that accompany these resources. Microgrids have the potential to mitigate the effects of resource uncertainty. With the ability to exist in either an islanded mode or maintain connections with the main-grid, a microgrid can increase reliability, defer T&D; infrastructure and effectively utilize demand response. This study presents a co-optimization framework for a microgrid with solar photovoltaic generation, emergency generation, and transmission switching. Today unit commitment models ensure reliability with deterministic criteria, which are either insufficient to ensure reliability or can degrade economic efficiency for a microgrid that uses a large penetration of variable renewable resources. A stochastic mixed integer linear program for day-ahead unit commitment is proposed to account for uncertainty inherent in PV generation. The model incorporates the ability to trade energy and ancillary services with the main-grid, including the designation of firm and non-firm imports, which captures the ability to allow for reserve sharing between the two systems. In order to manage the computational complexities, a Benders' decomposition approach is utilized. The commitment schedule was validated with solar scenario analysis, i.e., Monte-Carlo simulations are conducted to test the proposed dispatch solution. For this test case, there were few deviations to power imports, 0.007% of solar was curtailed, no load shedding occurred in the main-grid, and 1.70% load shedding occurred in the microgrid. / Dissertation/Thesis / M.S. Electrical Engineering 2013
99

Metallic Encapsulation for High Temperature (>500 °C) Thermal Energy Storage Applications

Bhardwaj, Abhinav 01 January 2015 (has links)
Deployment of high temperature (>500 °C) thermal energy storage in solar power plants will make solar power more cost competitive and pave the way towards a sustainable future. In this research, a unique metallic encapsulation has been presented for thermal energy storage at high temperatures, capable of operation in aerobic conditions. This goal was achieved by employing low cost materials like carbon steel. The research work presents the unique encapsulation procedure adopted, as well as various coatings evaluated and optimized for corrosion protection. Experimental testing favored the use of 150 μm of nickel on carbon steel for corrosion protection in these conditions. These metallic encapsulations survived several thermal cycles at temperatures from 580 °C to 680 °C with one encapsulation surviving for 1700 thermal cycles.
100

Avaliação do ciclo de vida de potenciais rotas de produção de hidrogênio: estudo dos sistemas de gaseificação da biomassa e de energia solar fotovoltaica / Life cycle assessment of hydrogen production routes: study of gaseification systems and photovoltaic solar power

FUKUROZAKI, SANDRA H. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:33:38Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:05:54Z (GMT). No. of bitstreams: 0 / No presente trabalho, o desempenho energético e ambiental de potencias rotas de produção de hidrogênio gaseificação da biomassa via leito fixo (LFX) e leito fluidizado (LFL) e de energia solar fotovoltaica foram estudados com base na metodologia de Avaliação do Ciclo de Vida (ACV). Após a revisão da literatura e a descrição dos procedimentos de análise, os resultados da ACV são apresentados e discutidos em termos de Demanda Acumulada de Energia (CED), Tempo de Retorno de Investimento em Energia (EPBT) e danos relacionados à Saúde Humana (SH), Qualidade do Ecossistema (QE) e Recursos Minerais e Combustíveis Fósseis (RMCF). No cômputo geral, o LFL é mais favorável para a produção de hidrogênio, embora os dois sistemas de gaseificação apresentem desempenho energético e ambiental similares. Comparativamente, o sistema fotovoltaico apresenta um EPBT maior (4,55 anos) do que os encontrados nos dois sistemas de conversão da biomassa (1,65 anos no LFL e 1,77 anos no LFX). Por outro lado, o sistema de energia solar fotovoltaico é o mais ambientalmente recomendável para a produção de hidrogênio, tendo em vista a menor contribuição em relação aos danos majoritários (saúde humana). Dentro do escopo do estudo, os sistemas avaliados apresentam mais características de complementaridade do que competição. Neste caso, enfatiza-se a importância de uma análise dos fatores econômicos e sociais pertinentes a cada país ou região, bem como dos processos posteriores de reforma e/ou purificação e eletrólise da água, considerando também o seu inteiro ciclo de vida. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP

Page generated in 0.0603 seconds