• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Instrumentation Development for Site-Specific Prediction of Spectral Effects on Concentrated Photovoltaic System Performance

Tatsiankou, Viktar January 2014 (has links)
The description of a novel device to measure the spectral direct normal irradiance is presented. The solar spectral irradiance meter (SSIM) was designed at the University of Ottawa as a cost-effective alternative to a prohibitively expensive field spectroradiometer (FSR). The latter measures highly-varying and location-dependent solar spectrum, which is essential for accurate characterization of a concentrating photovoltaic system’s performance. The SSIM measures solar spectral irradiance in several narrow wavelength bands with a combination of photodiodes with integrated interference filters. This device performs spectral measurements at a fraction of the cost of a FSR, but additional post-processing is required to deduce the solar spectrum. The model was developed to take the SSIM’s inputs and reconstruct the solar spectrum in 280–4000 nm range. It resolves major atmospheric processes, such as air mass changes, Rayleigh scattering, aerosol extinction, ozone and water vapour absorptions. The SSIM was installed at the University of Ottawa’s CPV testing facility in September, 2013. The device gathered six months of data from October, 2013 to March, 2014. The mean difference between the SSIM and the Eppley pyrheliometer was within ±1.5% for cloudless periods in October, 2013. However, interference filter degradation and condensation negatively affected the performance of the SSIM. Future design changes will improve the longterm reliability of the next generation SSIMs.

Page generated in 0.1514 seconds