• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 43
  • 26
  • 17
  • 13
  • 9
  • 8
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 314
  • 137
  • 98
  • 96
  • 67
  • 54
  • 52
  • 52
  • 46
  • 45
  • 34
  • 33
  • 32
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Optimalizace procesu pájení ve výrobě přístrojových transformátorů / Optimization of soldering process in the production of instrument transformers

Šula, Matěj January 2014 (has links)
This diploma thesis deals with the soldering process in manufacturing instrument transformers. It summarizes the knowledge of soldering process, lead-free alloys and test methods selected solder joint. In the practical part is the analysis the manufacturing process in terms of soldering operations, testing of selected lead-free alloys, which are considered as a replacement for lead-based alloy - now used in the manufacturing process. The conclusion is optimized manufacturing process to reduce operating costs and improve quality.
202

PHM Approaches for Reliability of ECUs : Analyses of Canaries and Real-Time Data Acquisition

Dag, Gabriel January 2017 (has links)
Today, Scania CV AB is facing challenging demands on functionality and performance within their vehicles. The electronics are increasing rapidly and to stay competitive on the market, concerns regarding reliability of electronic systems needs to be evaluated. Prognostics and health management (PHM) is a concept where reliability of, for example, electronic control units (ECUs) are assessed. It requires customized systems for each specific environment, due to different strains and stresses. One approach is to have canaries (components with reduced soldering mass) implemented into ECUs as an indication that something is about to happen. Another essential aspect is the continuous real-time data acquisition from sensors, that can be used for different algorithms and models, which could provide forecasts on remaining useful life (RUL) of the ECUs. An appliance is the big data acquisition, where a database will collect data from vehicles, which means that ECU data need be communicated differently than today. This is why this master thesis project investigated canaries on printed circuit boards (PCBs) when they were subjected to vibrations as well as thermal cycling (TC), which are common parameters within vehicles. The PCBs consisted of both lead (Sn-Pb) and lead-free (SAC305) soldering for material comparison, since a transition to lead-free electronics is happening. Several fatigue tests were performed to collect as much information as possible. For further advances towards a PHM implementation, thermal shock (TS) tests on ECUs were performed as well. The ECUs were shocked in a temperature cabinet while being in active state. The internal temperature sensor was communicated with via controller area network (CAN). Scania’s CAN program was used and the data was logged in a computer, which in turn was compared to the data from the surrounding thermocouples, placed in specific spots. The results that were achieved clearly showed that lead-free PCBs are much more sensitive to stresses (both vibrations and TC). It was also shown that canaries failed in a much higher extent than regular resistors. The real-time data acquisition from the ECU could successfully be managed, where continuous data was logged. Also, the TS tests showed how the correlation between sensors indifferent positions was. Finally, the results from these tasks were discussed for future work. One have to keep in mind that this is just the beginning of a many-years project within Scania. The results and progress within this master thesis project will hopefully be a step in the rightdirection.
203

Materials issues in the transition to lead-free solder alloys and joint miniaturization

Huang, Zhiheng January 2005 (has links)
Within the context of the imminent implementation of the Pb-free soldering in Europe in 2006, this thesis addresses the gap in understanding that has emerged in the fundamental materials issues between well-understood and mature lead-containing solders and a plethora of new, Pb-free solders for which there are neither long term reliability data nor understanding of the materials behaviour and how these might be influenced by manufacture and in-service conditions. In addition, this thesis also addresses the question as to whether the solder joint size and geometry could become a reliability issue and therefore affect the implementation of the Pb-free solders in ultrafine micro joints. Thermodynamic calculations using MTDATA (developed by the National Physical Laboratory, NPL, UK) together with a thermodynamic database for solders under either equilibrium or Scheil conditions, have shown their usefulness in Pb-free solder design and processing, generating a wealth of information in respect of the temperature dependence of phase formation and composition. The predictions from MTDATA on a number of selected systems is generally in good agreement with the results from experimental work, and has assisted in the understanding of the microstructure and mechanical properties of the Pb-free solders and the implications of their interactions with a tin-lead solder. However, further critical assessment and the addition of new elements into the solder database, such as Ni and P, are required to make MTDA TA a more effective computational tool to assist the optimization of processing parameters and cost-effective production in using Pb-free solders. Molten solder can interact with the under bump metallizations (UBM) and/or board level metallizations on either side of the solder bump to form intermetallic compounds (IMCs) during solder reflow. In the modelling of the kinetics of the dissolution process of UBM into the liquid solder, the commonly used NernstBrunner (N-B) equation is found to have poor validity for these calculations for micro joints at 100 μm in diameter or less. Three bumping techniques, i.e. solder dipping (SD), solder paste stencil printing followed by reflow (SPR) and electroplating of solders and subsequent reflow (EPR), are used to investigate the interfacial interactions of molten Sn/Sn-rich solders, i.e. pure Sn, Sn-3.5Ag, and Sn-3.8AgO.7Cu, on electroless nickel immersion gold (ENIG) and copper pads at 240°C. The resultant bulk and interfacial microstructures from a variety of pad sizes, ranging from 1 mm down to 25 μm, suggest that in general the small bumps contain smaller β-Sn dendrites and Ag₃Sn IMC particles, nevertheless the interfacial IMC is thicker in the smalI bumps than in the large bumps. In addition, one and two-dimensional combined thermodynamic and kinetic models have been developed to assist the understanding of the kinetics of interdiffusion and the formation of interfacial intermetallic compounds during reflow. Both the experimental results and theoretical predictions suggest that the solder bump size and geometry can influence the as-soldered microstructure, and therefore this factor should be taken into consideration for the design of future reliable ultrafine Ph-free solder joints.
204

Accelerated Reliability Testing of Fresh and Field-Aged Photovoltaic Modules: Encapsulant Browning and Solder Bond Degradation

January 2020 (has links)
abstract: The popularity of solar photovoltaic (PV) energy is growing across the globe with more than 500 GW installed in 2018 with a capacity of 640 GW in 2019. Improved PV module reliability minimizes the levelized cost of energy. Studying and accelerating encapsulant browning and solder bond degradation—two of the most commonly observed degradation modes in the field—in a lab requires replicating the stress conditions that induce the same field degradation modes in a controlled accelerated environment to reduce testing time. Accelerated testing is vital in learning about the reliability of solar PV modules. The unique streamlined approach taken saves time and resources with a statistically significant number of samples being tested in one chamber under multiple experimental stress conditions that closely mirror field conditions that induce encapsulant browning and solder bond degradation. With short circuit current (Isc) and series resistance (Rs) degradation data sets at multiple temperatures, the activation energies (Ea) for encapsulant browning and solder bond degradation was calculated. Regular degradation was replaced by the wear-out stages of encapsulant browning and solder bond degradation by subjecting two types of field-aged modules to further accelerated testing. For browning, the Ea calculated through the Arrhenius model was 0.37 ± 0.17 eV and 0.71 ± 0.07 eV. For solder bond degradation, the Arrhenius model was used to calculate an Ea of 0.12 ± 0.05 eV for solder with 2wt% Ag and 0.35 ± 0.04 eV for Sn60Pb40 solder. To study the effect of types of encapsulant, backsheet, and solder on encapsulant browning and solder bond degradation, 9-cut-cell samples maximizing available data points while minimizing resources underwent accelerated tests described for modules. A ring-like browning feature was observed in samples with UV pass EVA above and UV cut EVA below the cells. The backsheet permeability influences the extent of oxygen photo-bleaching. In samples with solder bond degradation, increased bright spots and cell darkening resulted in increased Rs. Combining image processing with fluorescence imaging and electroluminescence imaging would yield great insight into the two degradation modes. / Dissertation/Thesis / Doctoral Dissertation Systems Engineering 2020
205

Porovnání pájecích past z pohledu spolehlivosti pájeného spoje / Solder Paste Comparison from Solder Joint Reliability Point of View

Dokoupil, Jakub January 2018 (has links)
This thesis deals with the teoretical description of the solder during reflow soldering the solder paste and describing the defects arising during this process. Practical part of the thesis describes the testing of two solder pastes with different silver content before and after the accelerated temperature cycle.
206

Aplikace reaktivních nanočástic do SAC pájecí pasty / Reactive Nanoparticles Application to SAC 305 Solder Paste

Matras, Jan January 2018 (has links)
This work is a research on the topic of reactive nanoparticles and their agitation into the solder paste, which it also describes. It describes in detail the properties of each solder alloys. It explains the creation of intermetallic layers in the soldering process and examines their structure. It also focuses on the evaluation and methodology of testing the properties of solder pastes. In the practical part, individual tests are performed with PF606 and PF610 solder paste.
207

Detekce přítomnosti olova v pájkách používaných v elektrotechnice / The lead detection in solders

Macháň, Ladislav January 2008 (has links)
This work deals with issues of lead detection in solder irons used in electrotechnics. The general aim is to study principles of quantitative heavy metal detection by the electrochemical methods, optimal method selection and construction of detecting instrument.
208

Elektrická vodivost pájeného spoje a vliv na spolehlivost / Solder Joint Electric Conductivity and Solder Joint Reliability

Lačný, Radek January 2010 (has links)
This work is considered about changes of electric conductivity in lead-free soldered joint's affected by current and thermal stress. The theoretical part describes factors influencing the solder joint electric conductivity and solder joint reliability. The basis of the practical part is the design of the testing method of the soldered joint's electric conductivity. The aim of this part is to measure and observe changes of solder joint electric conductivity after current and thermal stress in various material a procedural combinations.
209

Stanovení termonapětí pájených spojů realizovaných olovnatými a bezolovnatými pájkami / Definition of thermotension by lead and lead-free solders

Dvořák, Jaroslav January 2011 (has links)
This research work is dealing with impact and size of the thermoelectric that may influence DC circuits. Main part of this thesis is to build experimental equipment for measurement of the thermoelectric and following usage this equipment for detection of the size the thermoelectric voltage for lead and lead-free solders. The theoretical part of this work deals with creation and usage of the thermoelectric in electrical engineering industry. In this particular part of this work is an example how the thermoelectric influence DC circuits. Then I describe thermoelectric generation from the motherboard to the die. The practical part of this thesis is focused on the development of the equipment for measuring of the thermoelectric of different types of materials. The Thermoelectric has been measured on two types of the lead, six types lead-free solders and on four types of the thermocouple wires. It has been measured within the range from 0°C to 80°C. In the end of this work is summary, where is reviewed witch of solders is the best for an applications affected by the thermoelectric.
210

Predikce spolehlivosti pájeného spoje / Solder Joint Reliability Prediction

Stejskal, Petr January 2015 (has links)
The thesis deals issue of the solder joint reliability and diagnostics. The manufacturing technology of electronics currently features a very high level of perfection. A large number of electrical devices ends its functional life due to solder joint failure. The objective of presented research consists studies of processes taking place in the solder joint due to soldering and after soldering. To this end, I will employ several methods of diagnostics. Noise based methods of solder joint measurement was evaluated. Based on a detailed study and understanding of processes it can be solder joint reliability predicted.

Page generated in 0.0523 seconds