• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE EFFECT OF PRESSURE ON THE ELECTRON MOBILITY IN SOLID HELIUM

Dionne, Vincent E. January 1971 (has links)
No description available.
2

HELIUM-3 VACANCY BOUND STATES, BOSE-EINSTEIN CONDENSATION, AND THE J PROBLEM IN SOLID HELIUM-4

Locke, Douglas Peter, 1949- January 1976 (has links)
No description available.
3

Nuclear magnetism of solid helium-three

Britton, Charles Valentine, January 1977 (has links)
Thesis--University of Florida. / Description based on print version record. Typescript. Vita. Includes bibliographical references (leaves 68-71).
4

Some thermal properties of solids

Bounds, Christopher Lloyds January 1968 (has links)
No description available.
5

Nuclear exchange energy and isotopic phase separation in solid helium

Panczyk, Michael Francis, January 1968 (has links)
Thesis--University of Florida. / Description based on print version record. Manuscript copy. Vita. Bibliography: leaves 100-102.
6

Some effects of pressure on condensed gases at low temperatures : a study of the magnetic properties of solid He³ at low temperatures

Richards, M. G. January 1964 (has links)
No description available.
7

Shear modulus of solid 4He confined in aerogel

Rabbani, Arif Unknown Date
No description available.
8

Defeitos em cristais formados por átomos de 4He / Defects in crystals formed by 4He

Vale, Renato Pessoa 16 August 2018 (has links)
Orientadores: Silvio Antonio Sachetto Vitiello, Maurice de Koning / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-16T14:29:42Z (GMT). No. of bitstreams: 1 Vale_RenatoPessoa_D.pdf: 5594892 bytes, checksum: 6cd9dc97441dc729a416210efb11ec2d (MD5) Previous issue date: 2010 / Resumo: Neste trabalho apresentamos um estudo feito sobre defeitos em um sólido quântico formado por átomos de 4He. Embora ainda não exista um mecanismo para explicar a fase supersólida deste sistema, ela tem sido frequentemente associada com a presença de desordem no cristal, que pode ocorrer com a existência de algum tipo de defeito. O método do trabalho reversível é aplicado para calcular a concentração de vacâncias e a energia livre de ligação entre estes defeitos pontuais. Inicialmente, esta metodologia é aplicada a um sólido quântico descrito por uma função de onda tipo Jastrow, para em seguida ser aplicada no nosso sistema de interesse. A função de onda sombra é utilizada para modelar o 4He sólido hcp, cujas configurações são amostradas através do método de Monte Carlo utilizando o algoritmo de Metropolis. Além da determinação das concentrações de monovacâncias e divacâncias, nossos resultados indicam que não existe uma tendência de se formar aglomerados deste defeito, que poderia levar a uma separação de fases. Posteriormente, utilizamos o método de Peierls-Nabarro para estudar defeitos lineares do tipo discordâncias. Para isto, determinamos as constantes elásticas do material, sendo esta a primeira estimativa teórica destas propriedades para o hélio sólido. Nosso modelo indica que estes defeitos lineares possuem uma tendência em se separar em pares de discordâncias parciais. Além disso, a resistência intrínseca da rede cristalina desempenha um papel importante na mobilidade destes defeitos. Portanto, um mecanismo para explicar a fase supersólida do 4He, que envolva a presença de discordâncias, deve levar em conta esta resistência / Abstract: In this work we present a study about defects in a quantum solid formed by atoms of 4He. Although there is no mechanism to explain the supersolid phase of this system, it has often been associated with the presence of disorder in the crystal, which can occur with the presence of some type of defect. The reversible work method is applied to calculate the concentration of the vacancies and the binding free energy between these point defects. Initially, this methodology is applied to a quantum solid described by a Jastrow wave function, to then be applied in our system of interest. A shadow wave function is used to model the hcp solid helium, whose con gurations are sampled by the Monte Carlo method using the Metropolis algorithm. Besides the determination of monovacancy and divacancy concentrations, our results indicate that there is not a tendency to form clusters of these defects, which could lead to a phase separation. Subsequently, we used the Peierls-Nabarro method to study linear defects like dislocations. With this purpose, we determined the elastic constants of material, this being the rst theoretical estimates of these properties for solid helium. Our model indicates that these linear defects have a tendency to separate into pairs of partial dislocations. Furthermore, the intrinsic resistance of the crystal lattice plays an important role in the mobility of these defects. Therefore, a mechanism to explain the supersolid phase of helium, which involves the presence of dislocations, should take account of this resistance / Doutorado / Física da Matéria Condensada / Doutor em Ciências
9

Fundamental Studies on Cavitation Dynamics in Superfluid Helium, Critical Helium, and Solid Helium

Alghamdi, Tariq 08 1900 (has links)
We focus on studying laser-induced cavitation under widely different physical conditions, from superheated jets to superfluid liquid helium. We use ultra high-speed video imaging to track cavitation bubble dynamics at frame-rates of up to 7 million frames-per-second. Cavitation is induced by focusing a 532 nm pulsed Nd-YAG laser at a spot with a minimum spot size of 150 μm and pulse duration of six ns, which forms high-pressure plasma, leading to a rapidly expanding bubble/void, which subsequently collapses. We mainly study two configurations: (1) laser-induced cavitation in liquid helium inside an optical cryostat and (2) laser-induced cavitation in HCP solid helium. Moreover, we report preliminary results of two promising studies: (3) laser-induced cavitation inside a highly turbulent flow within a square channel and (4) laser-induced break-up inside a cylindrical liquid jet, leading to its atomization. (1) Inside the liquid helium-4, we reach widely different thermodynamic conditions when adjusting the temperature between 1.4 to 5.1 degrees Kelvin. Below the lambda point at T = 2.17 K, the liquid is superfluid, with viscosity appr zero, while above this temperature, regular liquid helium approaches the critical point at ≃ 5.1 K. This greatly changes the cavitation dynamics with different amounts of vapor appearing during cavity growth and collapse, and revealed four regimes of cavitation bubble behavior. We also measure shock velocities and analyze their characteristics. (2) At pressures of roughly 25 atmospheres, superfluid helium (He-II) solidifies. With wavy time-evolving oscillations on its surface when disturbed, the interface between the solid and the superfluid exhibits fascinating behavior with wavy time-evolving oscillations on its surface when disturbed. The interface between liquid and solid can consequently behave similarly to a free surface. Here, we experimentally investigate laser-induced interfacial dynamics at temperatures between 1.2 K and 2 K and at pressures ranging from the melting pressure of approximately 25 atm to a maximum of 39 atm, which covers both the HCP and BCC structure of the solid, using ultra-high-speed imaging at frame rates up to 7 million frames per second. (3) The cavitation inside the turbulent flow; this study aims to investigate the mutual effect of the rapid straining outside the bubble on the coherent vortices within the liquid and the feedback from the modified turbulence on the shape of the vapor cavity, and to include time-resolved particle image velocimetry. (4) The cavitation inside a liquid jet helps break it up into fine spray, which is of interest for injectors in combustion engines.
10

Simulações Monte Carlo de integrais de trajetória = propriedades elásticas do 4He sólido / Path integrals Monte Carlo simulations : elastic properties of 4He

Peña Ardila, Luis Aldemar 17 August 2018 (has links)
Orientador: Maurice de Koning / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-17T12:17:48Z (GMT). No. of bitstreams: 1 PenaArdila_LuisAldemar_M.pdf: 3312905 bytes, checksum: da0a7b28a57fc4d8a5a1639bdf9f9473 (MD5) Previous issue date: 2010 / Resumo: O método Monte Carlo de integrais de trajetória (PIMC) é um sofisticado método para simular sistemas quânticos de muitos corpos. Em particular, é usado para a simulação de sistemas bosônicos como o 4He. O principal objetivo deste trabalho de Mestrado é aplicar o método PIMC para determinar as constantes elásticas do 4He sólido na sua fase hcp. Estas propriedades são muito importantes por estarem envolvidas num possível novo estado da matéria que foi descoberto no hélio sólido: a fase supersólida. Para realizar este objetivo, empregamos o pacote computacional PIMC++, que é uma implementação do método PIMC na linguagem C++, desenvolvido no grupo do Prof. David Ceperley. Primeiro realizamos testes básicos, calculando a energia total e a capacidade térmica para bósons livres, para as quais existem resultados exatos. Em seguida, consideramos a fase líquida do 4He, determinando propriedades como a energia, a fração de condensado e a densidade superfluida para o 4He líquido abaixo de 4K às condições de pressão de vapor saturado. Além disso, determinamos a função de correlação de pares e o fator de estrutura. Todas as propriedades apresentam boa concordância com dados experimentais. Após estes testes iniciais, determinamos as propriedades elásticas do 4He sólido na sua fase hcp descrito pelo potencial de pares de Aziz. Para realizarmos isso, implementamos o esquema de Parrinello e Rahman para permitir a utilização de células computacionais não-ortorrômbicas no pacote PIMC++. Além disso, desenvolvemos e implementamos a expressão para a observável tensorial tensão na linguagem de integrais de trajetória. Após estes desenvolvimentos técnicos, determinamos as constantes elásticas através de uma série de deformações de extensão/compressão e de cisalhamento, determinando o estado de tensão interno correspondente. Depois, usando a definição em termos da relação linear entre tensão e deformação, calculamos as constantes elásticas. Os resultados obtidos para 3 diferentes densidades e uma temperatura de 1 K demonstram que o modelo de Aziz captura as características fundamentais das propriedades elásticas do 4He na fase hcp / Abstract: The path-integral Monte Carlo (PIMC) method is a sophisticated approach for the simulation of many-body quantum systems. In particular, it has been extensively used for the study of manybody bosonic systems such as 4He. The main objective of the present dissertation is to apply the PIMC method to determine the elastic constants of solid 4He in its hcp phase. These properties are very important in view of their apparent involvement in the phenomenon of supersolidity in solid 4He. To realize this objective we utilize the software package PIMC++, which is an implementation of the PIMC method written in C++, developed in the group of Prof. David Ceperley. First, we carry out a number of basic tests, computing the total energy and heat capacity of an ideal gas of bosons, a system for which analytical results are available. Subsequently, we consider the liquid phase of 4He described by the Aziz pair potential, determining the energy per particle, the condensate fraction and superfluid density below 4 K under conditions of saturated vapor pressure. In addition, we compute the pair correlation function and the structure factor. All properties show good agreement with experimental data. After these preliminary tests, we determine the elastic constants of solid 4He in its hcp phase. To this end we implement the scheme due to Parrinello and Rahman, which allows the use of non-orthorhombic computational cells in PIMC++. In addition, we develop and implement an expression for the stress tensor observable within the path-integral formalism. After these technical developments, we determine the elastic constants by means of a series of tension/compression and shear deformations, measuring the corresponding internal stress states. Next, using the definition in terms of the linear relationship between stress and strain, we compute the elastic constants. The results obtained for 3 different densities at a temperature of 1K demonstrate that the Aziz model captures the fundamental characteristics of the elastic properties of 4He in the hcp phase / Mestrado / Física da Matéria Condensada / Mestre em Física

Page generated in 0.0426 seconds