71 |
Doped Perovskite Materials for Solid Oxide Fuel Cell (SOFC) Anodes and Electrochemical Oxygen SensorsPenwell, William 12 March 2014 (has links)
This work focused on the study of three independent projects involving perovskite oxide materials and their applications as solid oxide fuel cell (SOFC) anodes and electrochemical oxygen sensors. The underlying theme is the versatility and tune-ability of the perovskite structure. Reactivity and conductivity (ionic as well as electronic) are modified to optimize performance in a specific application.
The effect of Ce doping on the structure and the conductivity of BaFeO3 perovskite materials is investigated and the resulting materials are applied as oxygen sensors. The new perovskite family, Ba1-xCexFeO3-δ (x=0, 0.01, 0.03, and 0.05), was prepared via a sol-gel method. Powder XRD indicates a hexagonal structure for BaFeO3 with a change to a cubic perovskite upon Cerium doping at the A site. The solubility limit of Ce at the A site was experimentally determined to be between 5-7 mol %. Bulk, electronic and ionic conductivities of BaFeO3-δ and Ba0.95Ce0.05FeO3-δ were measured in air at temperatures up to 1000˚C. Cerium doping increases the conductivity throughout the entire temperature range with a more pronounced effect at higher temperatures. At 800˚C the conductivity of Ba0.95Ce.05FeO3-δ reaches 3.3 S/cm. Pellets of Ba0.95Ce.05FeO3-δ were tested as gas sensors at 500 and 700˚C and show a linear, reproducible response to O2.
Promising perovskite anodes have been tested in high sulfur fuel feeds. A series of perovskite solid oxide fuel cell (SOFC) anode materials: Sm0.95Ce0.05FeO3-δ, Sm0.95Ce0.05Fe0.97Ni0.03O3-δ and Sm0.95Ce0.05Fe0.97Co0.03O3-δ have been tested for sulfur tolerance at 500°C. The introduction of the extreme 5% H2S enhances the performance of these anodes, verified by EIS and CA experiments. Post mortem analyses indicate that the performance
XII
enhancement arises from the partial sulfidation of the anode, leading to the formation of FeS2, Sm3S4 and S on the perovskite surface. Testing in lower concentrations of sulfur, more common in sour fuels, 0.5% H2S, also enhances the performance of these materials. The SCF-Co anode shows promising stability and an increase in exchange current density, io, from 13.72 to 127.02 mA/cm2 when switching from H2 to 0.5% H2S/99.5% H2 fuel composition. Recovery tests performed on the SCF-Co anode conclude that the open cell voltage (OCV) and power density of these cells recover within 4 hours of H2S removal. We conclude that the formation of metal sulfide species is only partially reversible, yielding an anode material with an overall lower Rct upon switching back to pure H2. Combining their performance in sulfur containing fuels with their previously reported coke tolerance makes these perovskites especially attractive as low temperature SOFC anodes in sour fuels.
A new perovskite family Ba1-xYxMoO3 (x=0-0.05) has been investigated in regards to electrical conductivity and performance as IT-SOFC anode materials for the oxidation of H2. Refinement of p-XRD spectra as well as SEM imaging conclude that the solubility limit of Y doping at the A site is 5 mol%, beyond which Y2O3 segregation occurs. The undoped BaMoO3 sample has a colossal room temperature conductivity of 2500 S/cm in dry H2. All materials maintain metallic conductivity in the temperature range of 25-1000°C with resistance increasing with Y doping. The Ba1-xYxMoO3 (x=0, 0.05) materials exhibit good performance as SOFC anode materials between 500-800°C, with Rct values at 500°C in dry H2 of 3.15 and 6.33 ohm*cm2 respectively. The catalytic performance of these perovskite anodes is directly related to electronic conductivity, as concluded from composite anode performance.
|
72 |
Second Law Analysis Of Solid Oxide Fuel CellsBulut, Basar 01 January 2003 (has links) (PDF)
In this thesis, fuel cell systems are analysed thermodynamically and electrochemically. Thermodynamic relations are applied in order to determine the change of first law and second law efficiencies of the cells, and using the electrochemical relations, the irreversibilities occuring inside the cell are investigated. Following this general analysis, two simple solid oxide fuel cell systems are examined. The first system consists of a solid oxide unit cell with external reformer. The second law efficiency calculations for the unit cell are carried out at 1273 K and 1073 K, 1 atm and 5 atm, and by assuming different conversion ratios for methane, hydrogen, and oxygen in order to investigate the effects of temperature, pressure and conversion ratios on the second law efficiency. The irreversibilities inside the cell are also calculated and graphed in order to examine their effects on the actual cell voltage and power density of the cell. Following the analysis of a solid oxide unit cell, a simple fuel cell system is modeled. Exergy balance is applied at every node and component of the system. First law and second law efficiencies, and exergy loss of the system are calculated.
|
73 |
Mechanochemically synthesized nanomaterials for intermediate temperature solid oxide fuel cell membranesHos, James Pieter January 2005 (has links)
[Truncated abstract] In this dissertation an investigation into the utility of mechanochemically synthesized nanopowders for intermediate temperature solid oxide fuel cell components is reported. The results are presented in the following parts: the synthesis and characterisation of precursors for ceramic and cermet components for the fuel cell; the physical and electrical characterisation of the electrolyte and electrodes; and the fabrication, operation and analysis of the resulting fuel cells. Samarium-doped (20 mol%) ceria (SDC) nanopowder was fabricated by the solid-state mechanochemical reaction between SmCl3 with NaOH and Ce(OH)4 in 85 vol% dilution with NaCl. A milling time of 4 hours and heat treatment for 2 hours at 700°C yielded a material with equivalent particle and crystallite sizes of 17 nm. The existence of a complete solid solution was affirmed by electron energy loss spectroscopy and x-ray diffraction analysis. Doped-ceria compacts were sintered for 4 hours at 1350°C forming ceramics of 88% theoretical density. The ionic conductivity in flowing air was 0.009 S/cm, superior to commercially supplied nanoscale SDC. Anode precursor composite NiO-SDC nanopowder was synthesized by milling Ni(OH)2 with the previously defined SDC formulation ... Anode-supported fuel cells were fabricated on a substrate of at least 500 'm 55wt%NiO-SDC with 17vol% graphite pore formers. Suspensions of SDC were deposited by aerosol on the sintered bilayer at a thickness around 5 'm. A cathode of 10% SDC (SmSr)0.5CoO3 was deposited onto the sintered electrolyte and after firing had a thickness of around 25 'm. Operation of fuel cells in single-chamber mixtures of CH4 and air diluted in argon were successful and gave power outputs of 483 'W/cm2. Operation in undiluted 25 vol% CH4:air gave a power output of 5.5 mW/cm2. It was shown that a large polarisation resistance of 4.1 Ω.cm2 existed and this was assigned to losses in the anode, namely mass transport limitation associated with the catalytic combustion of methane and insufficient porosity. The large surface area of Ni appeared to allow more methane to combust and hence prevented its electrochemical reaction from occurring, thus limiting the performance of the cell. The synthesis procedures, ceramic processing and fabrication techniques and testing methods are discussed and contribute significant understanding to the fields of ceramic science and fuel cell technology.
|
74 |
Transient studies of Ni-, Cu-based electrocatalysts in CH₄ solid oxide fuel cellYu, Zhiqiang. January 2007 (has links)
Dissertation (Ph. D.)--University of Akron, Dept. of Chemical Engineering, 2007. / "December, 2007." Title from electronic dissertation title page (viewed 03/12/2008) Advisor, Steven S. C. Chuang; Committee members, Lu-Kwang Ju, Edward Evans, W. B. Arbuckle, Stephen Z. D. Cheng; Department Chair, Lu-Kwang Ju; Dean of the College, George K. Haritos; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
|
75 |
Multivariable robust control of a simulated hybrid solid oxide fuel cell gas turbine plantTsai, Alex, January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains xiv, 273 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 184-189).
|
76 |
Conductivity and microstructural characterisation of doped Zirconia-Ceria and Lanthanum Gallate electrolytes for the intermediate-temperature, solid oxide fuel cell /Kimpton, Justin Andrew. January 2002 (has links)
Thesis (Ph.D.) - School of Engineering and Science, Swinburne University of Technology, 2002. / Submitted in fulfillment of the requirements for the degree of Doctor of Philosophy, School of Engineering and Science, Swinburne University of Technology, 2002. Typescript. Includes bibliographical references (p. 229-239).
|
77 |
High temperature magnetic properties of transition metal oxides with perovskite structure /Baskar, Dinesh, January 2008 (has links)
Thesis (Ph. D.)--University of Washington, 2008. / Vita. Includes bibliographical references (leaves 111-119).
|
78 |
Robust copper braze for hermetic sealing of solid oxide fuel cellsAtor, Danielle Elizabeth. January 2008 (has links) (PDF)
Thesis (MS)-Montana State University--Bozeman, 2008. / Typescript. Chairperson, Graduate Committee: Stephen w. Sofie. Includes bibliographical references (leaves 88-90).
|
79 |
The Ba-Pb-O system and its potential as a solid oxide fuel cell (SOFC) cathode material /Sharp, Matthew David. January 2007 (has links)
Thesis (M.Phil.) - University of St Andrews, September 2007.
|
80 |
Solid oxide fuel cell as a distributed generator dynamic modeling, stability analysis and control /Sedghisigarchi, Kourosh. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2004. / Title from document title page. Document formatted into pages; contains xiii, 126 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 120-126).
|
Page generated in 0.0908 seconds