• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 220
  • 26
  • 22
  • 12
  • 9
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 449
  • 449
  • 428
  • 297
  • 165
  • 94
  • 76
  • 61
  • 54
  • 43
  • 41
  • 38
  • 37
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Development and Characterization of Nickel and Yttria-stabilized Zirconia Anodes for Metal-Supported Solid Oxide Fuel Cells Fabricated by Atmospheric Plasma Spraying

Metcalfe, Thomas Craig 13 January 2014 (has links)
Research was performed on the development of relationships between the microstructure of nickel and yttria-stabilized zirconia (YSZ) coatings and the processing parameters used for their deposition by atmospheric plasma spraying (APS). Research was also performed on the development of relationships between the microstructure of plasma sprayed Ni-YSZ coatings and the electrochemical performance of metal-supported solid oxide fuel cells (SOFCs) incorporating these coatings as anodes. Three APS processes were used to deposit Ni-YSZ coatings: dry-powder plasma spraying (DPPS), suspension plasma spraying (SPS), and solution precursor plasma spraying (SPPS). These processes differ in the form of the feedstock injected into the plasma. The composition of the Ni-YSZ coatings deposited with each spray process could be controlled through adjustment of the plasma gas composition and stand-off distance, as well as adjustment of feedstock properties including agglomerate size fraction for DPPS, NiO particle size and suspension feed rate in SPS, and the enthalpy of decomposition of the precursors used in SPPS. The porosity of the Ni-YSZ coatings could be controlled through the addition of a sacrificial pore forming material to each feedstock, with coating porosities up to approximately 35% being achieved for each coating type. Metal-supported SOFCs were fabricated to each have anodes deposited with a different plasma spray process, where all anodes had nominally identical composition. The microstructures obtained for each anode type were distinctly different. SPPS led to the most uniform mixing of the smallest Ni and YSZ particles. These anodes most resembled typical structures from anodes fabricated using conventional methods. It was found that the polarization resistance, Rp, associated with the high frequency (> 1 kHz) range of the impedance spectrum correlated to the three phase boundary length (TPBL) density of each anode, with lower Rp values corresponding to higher TPBL densities. It was also found that the Knudsen diffusion coefficient and effective ordinary diffusion coefficient of the porous anodes correlated with the Rp associated with the low frequency (< 1 kHz) range of the impedance spectrum. Therefore, the impedance spectrum can be used to compare microstructural differences among plasma sprayed Ni-YSZ anodes.
62

Three phase boundary length and effective diffusivity in modeled sintered composite solid oxide fuel cell electrodes

Metcalfe, Thomas Craig 05 1900 (has links)
Solid oxide fuel cells with graded electrodes consisting of multiple composite layers yield generally lower polarization resistances than single layer composite electrodes. Optimization of the performance of solid oxide fuel cells with graded electrode composition and/or microstructure requires an evaluation of both the three phase boundary length per unit volume and the effective diffusion coefficient in order to provide insight into how these properties vary over the design space. A numerical methodology for studying the three phase boundary length and effective diffusivity in composite electrode layers with controlled properties is developed. A three dimensional solid model of a sintered composite electrode is generated for which the mean particle diameter, composition, and total porosity may be specified as independent variables. The total three phase boundary length for the modeled electrode is calculated and tomographic methods are used to estimate the fraction of this length over which the electrochemical reactions can theoretically occur. Furthermore, the open porosity of the modeled electrode is identified and the effective diffusion coefficient is extracted from the solution of the concentration of the diffusing species within the open porosity. Selected example electrode models are used to illustrate the application of the methods developed, and the resulting connected three phase boundary length and diffusion coefficients are compared. A significant result is the need for thickness-specific effective diffusivity to be determined, rather than the general volume averaged property, for electrodes with porosity between the upper and lower percolation thresholds. As the demand for current increases, more of the connected three phase boundaries become active, and therefore a greater fraction of the electrode layer is utilized for a given geometry, resulting in a higher apparent effective diffusivity compared to the same electrode geometry operating at a lower current. The methods developed in this work may be used within a macroscopic electrode performance model to investigate optimal designs for solid oxide fuel cell electrodes with stepwise graded composition and/or microstructure.
63

Impedance model of a solid oxide fuel cell for degradation diagnosis

Gazzarri, Javier Ignacio 05 1900 (has links)
A numerical model of the steady state and alternating current behaviour of a solid-oxide fuel cell is presented to explore the possibilities to diagnose and identify degradation mechanisms in a minimally invasive way using impedance spectroscopy. This is the first report of an SOFC impedance model to incorporate degradation, as well as the first one to include the ribbed interconnect geometry, using a 2-D approximation. Simulated degradation modes include: electrode/electrolyte delamination, interconnect oxidation, interconnect/electrode interface detachment, and anode sulfur poisoning. Detailed electrode-level simulation replaces the traditional equivalent circuit approach, allowing the simulation of degradation mechanisms that alter the shape of the current path. The SOFC impedance results from calculating the cell response to a small oscillatory perturbation in potential. Starting from the general equations for mass and charge transport, and assuming isothermal and isobaric conditions, the system variables are decomposed into a steady-state component and a small perturbation around the operating point. On account of the small size of the imposed perturbation, the time dependence is eliminated, and the original equations are converted to a new linear, time independent, complex-valued system, which is very convenient from a numerical viewpoint. Geometrical and physical modifications of the model simulate the aforementioned degradation modes, causing variations in the impedance. The possibility to detect unique impedance signatures is discussed, along with a study of the impact of input parameter inaccuracies and parameter interaction on the presented results. Finally, a study of pairs of concurrent degradation modes reveals the method’s strengths and limitations in terms of its diagnosis capabilities.
64

Development and Characterization of Nickel and Yttria-stabilized Zirconia Anodes for Metal-Supported Solid Oxide Fuel Cells Fabricated by Atmospheric Plasma Spraying

Metcalfe, Thomas Craig 13 January 2014 (has links)
Research was performed on the development of relationships between the microstructure of nickel and yttria-stabilized zirconia (YSZ) coatings and the processing parameters used for their deposition by atmospheric plasma spraying (APS). Research was also performed on the development of relationships between the microstructure of plasma sprayed Ni-YSZ coatings and the electrochemical performance of metal-supported solid oxide fuel cells (SOFCs) incorporating these coatings as anodes. Three APS processes were used to deposit Ni-YSZ coatings: dry-powder plasma spraying (DPPS), suspension plasma spraying (SPS), and solution precursor plasma spraying (SPPS). These processes differ in the form of the feedstock injected into the plasma. The composition of the Ni-YSZ coatings deposited with each spray process could be controlled through adjustment of the plasma gas composition and stand-off distance, as well as adjustment of feedstock properties including agglomerate size fraction for DPPS, NiO particle size and suspension feed rate in SPS, and the enthalpy of decomposition of the precursors used in SPPS. The porosity of the Ni-YSZ coatings could be controlled through the addition of a sacrificial pore forming material to each feedstock, with coating porosities up to approximately 35% being achieved for each coating type. Metal-supported SOFCs were fabricated to each have anodes deposited with a different plasma spray process, where all anodes had nominally identical composition. The microstructures obtained for each anode type were distinctly different. SPPS led to the most uniform mixing of the smallest Ni and YSZ particles. These anodes most resembled typical structures from anodes fabricated using conventional methods. It was found that the polarization resistance, Rp, associated with the high frequency (> 1 kHz) range of the impedance spectrum correlated to the three phase boundary length (TPBL) density of each anode, with lower Rp values corresponding to higher TPBL densities. It was also found that the Knudsen diffusion coefficient and effective ordinary diffusion coefficient of the porous anodes correlated with the Rp associated with the low frequency (< 1 kHz) range of the impedance spectrum. Therefore, the impedance spectrum can be used to compare microstructural differences among plasma sprayed Ni-YSZ anodes.
65

Effect of Carbonate Addition on Cobaltite Cathode Performance

Kilius, Linas 27 April 2009 (has links)
This study investigated the overpotential performance enhancement of cathodes in low temperature solid oxide fuel cells (LT-SOFCs) due to the addition of carbonates to traditional Ce0.9Gd0.1O2 solid oxide fuel cell (SOFC) electrolytes. It was postulated in this study that this enhancement was due to the protonic conductivity of the carbonates. This provided an electrolyte with a dual conduction mechanism which improves the catalytic performance of the cathode. The cathode systems investigated were characterised for overpotential loss, conductivity and thermal expansion matching with the electrolyte. This produced results which predicted power outputs for a standard SOFC configuration as high as 970, 524 and 357 mW/cm2 at operational temperatures of 650oC, 600oC and 550oC. The benefits of these high power outputs and their potential to further reduce SOFC operational temperature was discussed. This study developed a cost-effective, reliable and commercially scalable manufacturing process for carbonate/Ce0.9Gd0.1O2 electrolytes. This pressureless sintering method is the first reported in literature, and is a promising replacement for the current hot-pressing technique currently used for these electrolytes. The electrolyte composition examined was 70 wt% Ce0.9Gd0.1O2 with 30 wt% carbonates (67 mol% Li2CO3 / 33 mol% Na2CO3). The cathode examined in this study was a composite cathode consisting of 50-90 wt% functional cathode material (Gd1-xSrxCoO3 with 10 to 30 mol% Sr doping on the Gd site) with a balance of electrolyte. It was determined that the composite cathode system with 10 wt% electrolyte and 20-30 mol% Sr doping was the optimal composition when operating at 600oC and above, with predicted power densities of 524 and 510 mW/cm2 at 600oC. At operational temperatures between 550oC and 600oC (and potentially lower), it was determined that a composite cathode system with 30 wt% electrolyte and 10-30 mol% Sr doping was the optimal composition. It was found that the presence of carbonates in the electrolyte decreased the overpotential losses of the cathode by 50-70% at 600oC for system studied; indicating that an improvement in cathodic performance coupled with the high conductivities of the electrolyte is most likely responsible for the high power outputs seen in literature. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2009-04-25 15:53:37.928
66

An Experimental and Modelling Study of Oxygen Reduction in Porous LSM/YSZ Solid Oxide Fuel Cell Cathodes

Kenney, BENJAMIN 20 July 2010 (has links)
Solid oxide fuel cells (SOFCs) are electrochemical devices that can convert a variety of fuels directly into electricity. Their commercialization requires efficient operation of its components. The sluggish kinetics for the oxygen reduction reaction (ORR) at the SOFC cathode contributes to the loss in the fuel cell efficiency. In this work, the ORR was investigated for the strontium-doped lanthanum manganite cathode (LSM) and yttria-stabilized zirconia electrolyte (YSZ) system. A combined mathematical modelling and experimental framework was developed to estimate, for the first time, the kinetics of the elementary processes of the ORR for porous LSM cathodes. The kinetics of each process was then analyzed to identify the contribution to the cathode resistance. The steady state and impedance response for polarized and unpolarized LSM cathodes was collected over a temperature range between 750C and 850C and two different oxygen partial pressure (pO2) ranges: (i) between 0.0001atm and 0.001atm, where LSM is considered to be stoichiometric with respect to oxygen and (ii) between 0.01atm and 0.21atm, where LSM is considered to be superstoichiometric with respect to oxygen. A mathematical model was developed to analyze both the steady state and impedance data. Two pathways for the ORR were considered: one where oxygen is transported in the gas phase and one where oxygen is transported along the surface of the LSM cathode. Rate constants, transport coefficients and their respective activation energies were obtained for the adsorption/desorption, surface diffusion and charge transfer processes. The experimental results indicated different polarization behavior between low and high pO2. It is hypothesized that the concentration of cation vacancies on the LSM surface changes with both pO2 and extent of polarization and that cation vacancies on the LSM surface can promote the ORR. Modelling results at low pO2 suggested that the adsorption reaction was slow and that thermodynamic limitations resulting in low equilibrium oxygen surface coverage can play an important role at both low and high polarizations. Modelling in high pO2 was complicated by the nature of the LSM surface in these conditions and suggests an electrochemical reaction at the gas/LSM interface and the transport of charged adsorbed oxygen atoms. / Thesis (Ph.D, Chemical Engineering) -- Queen's University, 2009-12-31 11:53:23.535
67

Cost analysis and balance-of-plant of a solid oxide fuel cell/gas turbine combined cycle

Douglas, Mary Elizabeth 05 1900 (has links)
No description available.
68

Enhancing the thermal design and optimization of SOFC technology

Rooker, William E. 05 1900 (has links)
No description available.
69

The integration of solid oxide fuel cell technology with industrial power generation systems

Reid, Patrick Earl Fitzgerald 12 1900 (has links)
No description available.
70

Development of novel heteronanostructures engineered for electrochemical energy conversion devices

Amani Hamedani, Hoda 27 August 2014 (has links)
Heterogeneous nanostructures such as coaxial nanotubes, nanowires and nanorods have been of growing interest due to their potential for high energy-conversion efficiencies and charge/discharge rates in solar cell, energy storage and fuel cell applications. Their superior properties at nanoscale as well as their high surface area, fast charge transport along large interfacial contact areas, and short charge diffusion lengths have made them attractive components for next generation high efficiency energy-conversion devices. The primary focus of this work was to understand the doping mechanism of TiO2 nanotube exclusively with strontium as an alkaline earth metal to shine light on the relation between the observed enhancement in photocatalytic properties of doped TiO2 nanotubes and its structural and electronic characteristics. The mechanism of Sr incorporation into the TiO2 nanotube structure with the hypothesis of possibility of phase segregation has been explored in low concentrations as a dopant and in very high concentrations by processing of SrTiO3 nanotube arrays. Detailed experimental examination of the bulk and surface of the Sr-doped nanotubes has been performed to understand the effect of dopant on electronic structure and optical properties of the TiO2 nanotubes. Moreover, in order to minimize the polarizations associated with the ionic/electronic charge transport in the electrolyte and anode of solid oxide fuel cells (SOFCs), a new platform is developed using vertically oriented metal oxide nanotube arrays. This novel platform, which is made of coaxial oxide nanotubes on silicon substrates, has the potential to simultaneously lower the operating temperature and production cost leading to significant enhancement in the performance of micro-SOFCs.

Page generated in 0.0699 seconds