• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TETRANUCLEAR CU(I) CLUSTERS WITH TUNABLE EMISSIONS BASED ON REMOTE STERIC CONTROL

Benjamin M Washer (14213087) 05 December 2022 (has links)
<p>Solid-state (SS) luminescent materials are an important class of materials in a myriad of technological applications including light-emitting devices (LEDs) and displays, SS lasers, sensors, imaging agents, etc. Unfortunately, the design of efficient SS emitters is often plagued by sensitivity to environment/matrix (e.g. aggregation-induced quenching, AIQ), competing non-radiative relaxation pathways, and complicated emission mechanisms that are difficult to systematically study and tune. Copper-based systems have been proven to be good candidates for SS emissive materials due to their low-cost, high synthetic variation and well-defined features. Examples of copper-cluster systems, specifically, have been shown to be highly stable, exhibit high photoluminescent quantum yields (ΦPL), and are often relatively insensitive to environmental changes. However, many of these systems are complicated in nature, and often evoke additional relaxation pathways. To mitigate these issues, tetranuclear Cu(I)-pyrazolate complexes have been made which exhibit high ΦPL, matrix insensitivity and proceed through one major radiative emission pathway: cluster-centered based phosphorescence (3CC). The pyrazoles are highly tunable, and by increasing the size of the ligand substituents (H, F, Cl/Me/Br), a rigidochromic effect is observed, causing a significant blue-shift in their photoluminescence, making these viable materials for organic LEDs (OLEDs), especially in the deep-blue region. Furthermore, by increasing the chain length of the ligand substituent (e.g., Me → Et), another material which exhibits stimuli-responsive luminochromism in response to solvent vapor or heat can be achieved. This material exhibits blue ↔ green rigidochromic luminescence in response to stimuli via isomerization of the ethyl units from exo ↔ endo resulting in additional steric effects that effectively prevent rigidification of the Cu4 cluster. This additional phenomenon opens the door for further exploration of Cu(I)-pyrazolate complexes for stimuli-responsive luminescent materials (SRLMs) applications.</p>
2

Birch leaf carbon dots: characterization and application in a light-emitting electrochemical cell

Gregorsson, Märta January 2022 (has links)
A new rising star in the carbon nanomaterial family is carbon dots. Carbon dots have received great attention due to their excellent luminescence and low toxicity. In this project, a new carbon dot derived from birch leaves is studied and characterized. The birch leaf carbon dot (BL-CD) exhibits narrow red photoluminescence (peak = 670 nm, full width at half maximum = 23 nm) with a photoluminescence quantum yield of 26% in dilute methanol solution.  The presence of the characteristic peaks of the pigment pheophytin-a in the absorption spectrum and the photoluminescence spectrum of the BL-CD and the absence of a crystal structure together with the narrow and excitation-independent photoluminescence indicate a carbon dot with a non-emissive amorphous structure with emissive molecular sites consisting of the pigment. The photoluminescence quenching of the BL-CDs in solid-state is reduced by the introduction of a hostmaterial. The use of a host enabled the employment of BL-CDs as the emitter in a light-emitting electrochemical cell (LEC). This project paves the way for further development of the environmentally friendly and sustainable BL-CD LEC.

Page generated in 0.0957 seconds