• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum Perspectives on Physical and Inorganic Chemistry

Grimes-Marchan, Thomas V. 12 1900 (has links)
Applications of computational quantum chemistry are presented, including an analysis of the photophysics of cyclic trinuclear coinage metal pyrazolates, an investigation into a potential catalytic cycle utilizing transition metal scorpionates to activate arene C-H bonds, and a presentation of the benchmarking of a new composite model chemistry (the correlation consistent composite approach, ccCA) for the prediction of classical barrier heights. Modeling the pyrazolate photophysics indicates a significant geometric distortion upon excitation and the impact of both metal identity and substituents on the pyrazolates, pointing to ways in which these systems may be used to produce rationally-tuned phosphors. Similarly, thermodynamic and structural investigations into the catalyst system points to promising candidates for clean catalytic activation of arenes. The ccCA was found to reproduce classical reaction barriers with chemical accuracy, outperforming all DFT, ab initio, and composite methods benchmarked.
2

TETRANUCLEAR CU(I) CLUSTERS WITH TUNABLE EMISSIONS BASED ON REMOTE STERIC CONTROL

Benjamin M Washer (14213087) 05 December 2022 (has links)
<p>Solid-state (SS) luminescent materials are an important class of materials in a myriad of technological applications including light-emitting devices (LEDs) and displays, SS lasers, sensors, imaging agents, etc. Unfortunately, the design of efficient SS emitters is often plagued by sensitivity to environment/matrix (e.g. aggregation-induced quenching, AIQ), competing non-radiative relaxation pathways, and complicated emission mechanisms that are difficult to systematically study and tune. Copper-based systems have been proven to be good candidates for SS emissive materials due to their low-cost, high synthetic variation and well-defined features. Examples of copper-cluster systems, specifically, have been shown to be highly stable, exhibit high photoluminescent quantum yields (ΦPL), and are often relatively insensitive to environmental changes. However, many of these systems are complicated in nature, and often evoke additional relaxation pathways. To mitigate these issues, tetranuclear Cu(I)-pyrazolate complexes have been made which exhibit high ΦPL, matrix insensitivity and proceed through one major radiative emission pathway: cluster-centered based phosphorescence (3CC). The pyrazoles are highly tunable, and by increasing the size of the ligand substituents (H, F, Cl/Me/Br), a rigidochromic effect is observed, causing a significant blue-shift in their photoluminescence, making these viable materials for organic LEDs (OLEDs), especially in the deep-blue region. Furthermore, by increasing the chain length of the ligand substituent (e.g., Me → Et), another material which exhibits stimuli-responsive luminochromism in response to solvent vapor or heat can be achieved. This material exhibits blue ↔ green rigidochromic luminescence in response to stimuli via isomerization of the ethyl units from exo ↔ endo resulting in additional steric effects that effectively prevent rigidification of the Cu4 cluster. This additional phenomenon opens the door for further exploration of Cu(I)-pyrazolate complexes for stimuli-responsive luminescent materials (SRLMs) applications.</p>
3

Immobilisierung von Palladium mittels 1,4-Bis-(4‘-pyrazolyl)benzen und dessen Anwendung in der heterogenen Katalyse

Liebold, Claudia 08 November 2013 (has links) (PDF)
Die Immobilisierung homogener Katalysatoren ist eine wichtige Methode zur Realisierung der Abtrennbarkeit und Wiederverwendbarkeit aktiver Spezies. Im Rahmen dieser Arbeit wurde durch die Komplexierung von Palladium mit 1,4-Bis-(4′-pyrazolyl)benzen ein neues mikroporöses Koordinationspolymer generiert und dieses als heterogener Katalysator in der Suzuki-Miyaura-Kreuzkupplungsreaktion erfolgreich eingesetzt. Dabei konnten vollständige Umsätze und hohe Selektivitäten erzielt werden, die vergleichbar zu bereits kommerziell erhältlichen homogenen Katalysatoren sind. Die Besonderheit des Katalysators ist, neben dessen außergewöhnlich hohen chemischen Stabilität, die Variation seiner Struktureigenschaften durch die Wahl der Synthesebedingungen und die damit verbundene Steuerung seiner katalytischen Aktivität.
4

Immobilisierung von Palladium mittels 1,4-Bis-(4‘-pyrazolyl)benzen und dessen Anwendung in der heterogenen Katalyse: Immobilisierung von Palladium mittels 1,4-Bis-(4‘-pyrazolyl)benzen und dessen Anwendung in der heterogenen Katalyse

Liebold, Claudia 18 March 2013 (has links)
Die Immobilisierung homogener Katalysatoren ist eine wichtige Methode zur Realisierung der Abtrennbarkeit und Wiederverwendbarkeit aktiver Spezies. Im Rahmen dieser Arbeit wurde durch die Komplexierung von Palladium mit 1,4-Bis-(4′-pyrazolyl)benzen ein neues mikroporöses Koordinationspolymer generiert und dieses als heterogener Katalysator in der Suzuki-Miyaura-Kreuzkupplungsreaktion erfolgreich eingesetzt. Dabei konnten vollständige Umsätze und hohe Selektivitäten erzielt werden, die vergleichbar zu bereits kommerziell erhältlichen homogenen Katalysatoren sind. Die Besonderheit des Katalysators ist, neben dessen außergewöhnlich hohen chemischen Stabilität, die Variation seiner Struktureigenschaften durch die Wahl der Synthesebedingungen und die damit verbundene Steuerung seiner katalytischen Aktivität.:1 EINLEITUNG 1 2 KENNTNISSTAND 5 2.1 Immobilisierung von Palladium 5 2.1.1 Organische Trägermaterialien 6 2.1.1.1 Polyanilin 6 2.1.1.2 Polymerverankerte Phosphanliganden 8 2.1.1.3 Imprägnierung komplexfunktionalisierter Polymere 10 2.1.2 Anorganische Trägermaterialien 11 2.1.2.1 Aktivkohle 11 2.1.2.2 Metalloxide 13 2.1.3 Hybridmaterialien 14 2.1.3.1 Infinite Coordination Polymers 14 2.1.3.2 Metal-Organic Frameworks 17 2.2 Die Suzuki-Miyaura-Kreuzkupplungsreaktion 24 2.2.1 Allgemeine mechanistische Vorstellungen zur Reaktion 27 2.2.2 Die PdII/PdIV-Katalyse – Ein umstrittener Mechanismus 29 3 AUFGABENSTELLUNG UND LÖSUNGSSTRATEGIE 33 4 ERGEBNISSE UND DISKUSSION 38 4.1 Charakterisierung des Koordinationspolymers [Pd(BPB)]n 38 4.1.1 Bis(triphenylphosphan)palladium(II)dichlorid als Palladiumprecursor 38 4.1.1.1 Synthese und Charakterisierung 38 4.1.1.2 Porosität 49 4.1.1.3 Oxidationsstufe des Palladium 57 4.1.1.4 Strukturdiskussion 64 4.1.2 Mechanistische Untersuchungen zur Bildung von [Pd(BPB)]n 74 4.1.2.1 Verfolgung des Reaktionsablaufes mittels Kernresonanzspektroskopie 74 4.1.2.2 Vorschläge zum Reaktionsmechanismus 81 4.1.3 Alternative Palladiumprecursoren für [Pd(BPB)]n 88 4.1.3.1 Bis(triphenylphosphan)palladium(II)dibromid 88 4.1.3.2 Natriumtetrachloropalladat 90 4.1.3.3 Weitere Palladiumprecursoren 93 4.1.4 Alternative Synthesetechniken für [Pd(BPB)]n 94 4.1.4.1 Solvothermale Synthese 94 4.1.4.2 Basendiffusionsmethode 95 4.2 Heterogen katalysierte Suzuki-Miyaura-Reaktion mit [Pd(BPB)]n 97 4.2.1 Verifizierung des Versuchsablaufes mittels Vergleichskatalysatoren 97 4.2.2 Die katalytische Aktivität von [Pd(BPB)]n in der Suzuki-Reaktion 100 4.2.3 Katalysatorstabilität und Wiederverwendbarkeit von [Pd(BPB)]n 104 4.2.4 Einfluss der Reaktionstemperatur 110 4.2.5 Einfluss des phosphanhaltigen Palladiumprecursors 114 5 ZUSAMMENFASSUNG 116 A EXPERIMENTELLER TEIL 120 A.1 Synthese und Charakterisierung von [Pd(BPB)]n 120 A.1.1 Arbeitstechniken und verwendete Chemikalien 120 A.1.2 Synthesevorschriften für [Pd(BPB)]n 122 A.1.2.1 Darstellung von 1,4-Bis-(4′-pyrazolyl)benzen (H2BPB) 122 A.1.2.2 Fällungssynthese von [Pd(BPB)]n 122 A.1.2.3 Solvothermale Synthese von [Pd(BPB)]n 123 A.1.2.4 Diffusionskontrollierte Synthese von [Pd(BPB)]n 124 A.1.2.5 Synthese aus Natriumtetrachloropalladat 124 A.1.2.6 Synthese aus Palladiumacetat 124 A.1.2.7 Synthese aus PdBr2(PPh3)2 125 A.1.3 Charakterisierung von [Pd(BPB)]n 125 A.2 Durchführung der Suzuki-Miyaura-Reaktion 127 A.2.1 Umsetzung von 4-Bromacetophenon mit Phenylboronsäure 127 A.2.2 Katalysatorstabilität und Wiederverwendbarkeit 128 A.2.3 Analyse und Identifizierung der Reaktionsprodukte 129 B ANHANG 134 B.1 Charakterisierung von [Pd(BPB)]n 134 B.2 Mechanistische Untersuchungen zur Bildung von [Pd(BPB)]n 140 B.3 Katalytische Aktivität von [Pd(BPB)]n 141 B.4 Tabellenverzeichnis 143 B.5 Abbildungsverzeichnis 145 B.6 Symbole und Abkürzungen 150 B.7 Literaturverzeichnis 154

Page generated in 0.0603 seconds