• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 380
  • 191
  • 56
  • 49
  • 22
  • 13
  • 13
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 872
  • 178
  • 81
  • 69
  • 64
  • 59
  • 54
  • 52
  • 51
  • 50
  • 47
  • 46
  • 41
  • 40
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Characterization of alpha-cyclodextrin inclusion complexes with trans-cinnamic acid in an acid-based beverage system

Romano, Dina Lynn 16 May 2008 (has links)
In response to a need for a natural antimicrobial to replace sodium benzoate, cinnamic acid was chosen. Due to cinnamic acid's solubility issues, α-cyclodextrin was used as a host molecule to form an inclusion complex with the cinnamic acid molecule. The cinnamic acid: α-cyclodextrin inclusion complex was then characterized using phase solubility analysis, proton nuclear magnetic resonance (H-NMR), and solid inclusion. Phase solubility analysis verified the maximum amount of cinnamic acid that α-cyclodextrin was able to host. H-NMR was used to determine the complex association constant, determine the chemical shifts of available protons, and yield a stoichiometry for the complex. The solid inclusion complex allowed for a physical formation of the complex, yielding further information in support of the complex stoichiometry. Microbiological tests were also performed to quantify the antimicrobial abilities of the complex, the guest, and the host against the yeast Saccharomyces cerevisiae and mold Paecilomyces variotii. Results indicated that approximately 990.29 ppm in aqueous solution was the maximum amount of cinnamic acid in the complex. The 2:1 stoichiometry yields an association constant of 21.7 M-1. Results also indicated that the cinnamic acid readily conformed to fit within the α-cyclodextrin host molecule, which remained a rigid structure. An 8.9% weight to weight of cinnamic acid was calculated for the solid inclusion again reinforcing a 2:1 stoichiometry. Microbiological studies showed little to no inhibition power by the complex at varying concentrations against S. cerevisiae and P. variotii. Free cinnamic acid showed greater antimicrobial activity compared with free α-cyclodextrin and the complex. / Master of Science in Life Sciences
302

Aging and Copper Corrosion By-Product Release: Role of Common Anions, Impact of Silica and Chlorine, and Mitigating Release in New Pipe

Powers, Kimberly Alice 24 January 2001 (has links)
It is desirable to reduce leaching of copper from home plumbing because of environmental concerns and to comply with stringent regulation of copper in wastewater and drinking water. The solubility of the scale (oxidized copper rust layer) on the copper pipe wall, which directly contacts drinking water, is a key factor controlling the maximum soluble copper release. Gradual replacement of soluble Cu(OH)2 scale to less soluble scale is desirable and occurs through a process known as "aging. The presence of sulfate, bicarbonate and orthophosphate in water can quickly convert Cu(OH)2 to less soluble solids. In some cases, this produces a desirable short-term reduction in copper solubility, but over longer time periods formation of these solids can be detrimental because they interfere with formation of very low solubility tenorite (CuO)or malachite phases. Likewise, silica present in water can sorb to Cu(OH)2 and hinder aging to low solubility tenorite, while the presence of chlorine can hasten aging by a chemical reaction with cupric species that has never been previously observed in the drinking water field. Mild chemical treatments that might be used to accelerate aging, and which could be applied to reduce environmental impacts of newly installed copper pipe, were successfully tested. Chemical pretreatments using lime, caustic, soda ash or chlorine reduced copper release by as much as 84% compared to new pipes without pretreatment. / Master of Science
303

Cellulose-based amorphous solid dispersions enhance rifapentine delivery characteristics and dissolution kinetics in vitro

Winslow, Christopher Jonathan 14 July 2017 (has links)
The efficacy of rifapentine, an oral antibiotic used in the treatment of tuberculosis, is reduced due to its degradation at gastric pH and low solubility at intestinal pH. We aimed to improve delivery properties in vitro by incorporating rifapentine into pH-responsive amorphous solid dispersions with cellulose derivatives including: hydroxypropylmethylcellulose acetate succinate (HPMCAS), cellulose acetate suberate (CASub), and 5-carboxypentyl hydroxypropyl cellulose (CHC). Most amorphous solid dispersions reduced rifapentine release at gastric pH, with the best performing polymer CASub showing >31-fold decrease in area under the curve compared to rifapentine alone. Lower solubility at gastric conditions was accompanied by a reduction in the acidic degradation product 3-formylrifamycin, as compared to rifapentine alone. Certain formulations also showed enhanced apparent solubility and stabilization of supersaturated solutions at intestinal pH, with the best performing polymer HPMCAS showing almost a 4-fold increase in total area under the curve compared to rifapentine alone. These in vitro results suggest that delivery of rifapentine via amorphous solid dispersion with cellulose polymers may improve bioavailability in vivo. / Master of Science in Life Sciences / Rifapentine is an antibiotic that is used in the treatment of tuberculosis. Although it is an effective drug, it has limitations caused by digestion and its low ability to dissolve in water. The environment of the human stomach, which contains strong acid, can destroy the drug making it ineffective against the bacteria that cause tuberculosis. The low ability to dissolve in water is also a problem because in order for the drug to be absorbed, it must be dissolved first. Improving these characteristics of this drug could lead to advancements in the treatment and elimination of tuberculosis. The strategy we used to enhance the characteristics of this drug is called amorphous solid dispersion. This system holds the drug in a very easy to absorb form and releases it as such. Many amorphous solid dispersion formulations in combination with other drugs have shown improved ability to dissolve the drugs and protection of drugs from destruction in harsh conditions such as the stomach acid. Various derivatives of natural cellulose (a chain of sugars, called a polysaccharide, which is a major component of all plants) were used as part of this system, to stabilize the drug and to help dissolve it. We found that these amorphous solid dispersions did help to release and dissolve the drug in large concentrations and protect the drug from the stomach acid. Since we have seen positive results here, the next step is to use these systems in an animal study.
304

Solubility of Budesonide, Hydrocortisone, and Prednisolone in Ethanol plus Water Mixtures at 298.2 K

Ali, Hany S.M., York, Peter, Blagden, Nicholas, Soltanpour, S., Acree, W.E. Jr., Jouyban, A. 01 1900 (has links)
No / Experimental solubilities of budesonide, hydrocortisone, and prednisolone in ethanol + water mixtures at 298.2 K are reported. The solubility of drugs was increased with the addition of ethanol and reached the maximum values of the volume fractions of 90 %, 80 %, and 80 % of ethanol. The Jouyban-Acree model was used to fit the experimental data, and the solubilities were reproduced using previously trained versions of the Jouyban-Acree model and the solubility data in monosolvents in which the overall mean relative deviations (OMRDs) of the models were 5.1 %, 6.4 %, 37.7 %, and 35.9 %, respectively, for the fitted model, the trained version for ethanol + water mixtures, and generally trained versions for various organic solvents + water mixtures. Solubilities were also predicted by a previously established log-linear model of Yalkowsky with the OMRD of 53.8 %.
305

Resistant maltodextrin as a shell material for encapsulation of naringin: Production and physicochemical characterization

Pai, D.A., Vangala, Venu R., Ng, J.W., Tan, R.B.H. January 2015 (has links)
Yes / Herein the potential of a relatively new water soluble fiber, resistant maltodextrin (RMD) to encapsulate grapefruit polyphenol, naringin, using spray drying was evaluated. Full factorial Design Of Experiments (DOE) for spray drying with two levels of fiber–naringin ratio and spray dryer inlet temperature was executed. Resulting powders were characterized with respect to particle size and morphology, crystallinity, thermal properties, moisture sorption and naringin aqueous solubility increase. A 60–80% encapsulation was achieved. Thermal and moisture sorption behaviors of these dispersions were found to be dominated by RMD. By varying fiber–naringin ratio and spray drying temperatures, naringin was able to disperse in amorphous form in RMD matrix, which led to 20–55% increase in aqueous solubility. Solubility enhancement was found to correlate positively with increasing fiber: naringin ratio and spray drying temperature due to multiple factors discussed in this study. In conclusion, fiber–polyphenol bicomponent nutraceutical was successfully developed based on a well-established encapsulation technology i.e. spray-drying.
306

Tracing the architecture of caffeic acid phenethyl ester cocrystals: studies on crystal structure, solubility, and bioavailability implications

Ketkar, S.S., Pagire, Sudhir K., Goud, N.R., Mahadik, K.R., Nangia, A., Paradkar, Anant R 2016 August 1919 (has links)
Yes / Caffeic acid phenethyl ester (CAPE) is a polyphenolic active compound present in popular apiproduct, ‘propolis’ obtained from beehives. Though it has broad therapeutic capability, the bioavailability of CAPE is limited due to poor solubility. In this study, we report novel cocrystals of CAPE engineered using coformers such as caffeine (CAF), isonicotinamide (INIC), nicotinamide (NIC) with enhanced solubility and bioavailability of CAPE. The cocrystals were prepared by microwave-assisted cocrystallization and characterized using PXRD, DSC and Raman spectroscopy. PXRD and DSC confirm the successful formation and phase purity of CAPE-CAF, CAPE-INIC and CAPE-NIC cocrystals. Raman spectra of CAPE cocrystals complement these results in confirming the formation of novel crystalline phases. CAPE-NIC cocrystal was further subjected to X-ray crystallography to understand its molecular arrangement and hydrogen bonding in the crystal structure. The CAPE-NIC cocrystal structure is found to be stabilized by a rare 1,2-benzenediol-amide heterosynthon. Cocrystallization of CAPE with NIC improved its aqueous solubility and pharmacokinetic profile thereby demonstrating 2.76 folds escalation in bioavailability. / We thank UKIERI: UK-India Education and Research Initiative (TPR26) and EPSRC (EP/J003360/1, EP/L027011/1) for providing financial support during this study.
307

Three new hydrochlorothiazide cocrystals: Structural analyses and solubility studies

Ranjan, S., Devarapalli, R., Kundu, S., Vangala, Venu R., Ghosh, A., Reddy, C.A. 09 December 2016 (has links)
Yes / Hydrochlorothiazide (HCT) is a diuretic BCS class IV drug with poor aqueous solubility and low permeability leading to poor oral absorption. The present work explores the cocrystallization technique to enhance the aqueous solubility of HCT. Three new cocrystals of HCT with water soluble coformers phenazine (PHEN), 4-dimethylaminopyridine (DMAP) and picolinamide (PICA) were prepared successfully by solution crystallization method and characterized by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), fourier transform –infraredspectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Structural characterization revealed that the cocrystals with PHEN, DMAP and PICA exists in P21/n, P21/c and P21/n space groups, respectively. The improved solubility of HCT-DMAP (4 fold) and HCT-PHEN (1.4 fold) cocrystals whereas decreased solubility of HCT-PICA (0.5 fold) as compared to the free drug were determined after 4 h in phosphate buffer, pH 7.4, at 25 °C by using shaking flask method. HCT-DMAP showed a significant increase in solubility than all previously reported cocrystals of HCT suggest the role of a coformer. The study demonstrates that the selection of coformer could have pronounced impact on the physicochemical properties of HCT and cocrystallization can be a promising approach to improve aqueous solubility of drugs.
308

Characterisation of aggregates of cyclodextrin-drug complexes using Taylor Dispersion Analysis

Zaman, Hadar, Bright, A.G., Adams, Kevin, Goodall, D.M., Forbes, Robert T. 06 February 2017 (has links)
Yes / There is a need to understand the nature of aggregation of cyclodextrins (CDs) with guest molecules in increasingly complex formulation systems. To this end an innovative application of Taylor dispersion analysis (TDA) and comparison with dynamic light scattering (DLS) have been carried out to probe the nature of ICT01-2588 (ICT-2588), a novel tumor-targeted vascular disrupting agent, in solvents including a potential buffered formulation containing 10% hydroxypropyl-β-cyclodextrin. The two hydrodynamic sizing techniques give measurement responses are that fundamentally different for aggregated solutions containing the target molecule, and the benefits of using TDA in conjunction with DLS are that systems are characterised through measurement of both mass- and z-average hydrodynamic radii. Whereas DLS measurements primarily resolve the large aggregates of ICT01-2588 in its formulation medium, methodology for TDA is described to determine the size and notably to quantify the proportion of monomers in the presence of large aggregates, and at the same time measure the formulation viscosity. Interestingly TDA and DLS have also distinguished between aggregate profiles formed using HP-β-CD samples from different suppliers. The approach is expected to be widely applicable to this important class of drug formulations where drug solubility is enhanced by cyclodextrin and other excipients.
309

Descriptors for Edaravone; Studies on its Structure, and Prediction of Properties

Liu, Xiangli, Aghamohammadi, Amin, Afarinkia, Kamyar, Abraham, R.J., Acree, W.E. Jr, Abraham, M.H. 15 March 2021 (has links)
Yes / Literature solubilities and NMR and IR studies have been used to obtain properties or descriptors of edaravone. These show that edaravone has a significant hydrogen bond acidity so that it must exist in solution partly as the OH and NH forms, as found by Freyer et al. Descriptors have been assigned to the keto form which has a low hydrogen bond acidity, and which is the dominant form in nonpolar solvents. Physicochemical properties of the keto form can be been calculated such as solubilities in nonpolar solvents, partition coefficients from water to nonpolar solvents, and partition coefficients from air to biological phases.
310

Percutaneous delivery of thalidomide and its N-alkyl analogues for treatment of rheumatoid arthritis / Colleen Goosen

Goosen, Colleen January 1998 (has links)
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease associated with high levels of tumour necrosis factor-alpha (TNF-a) in synovial fluid and synovial tissue (Saxne et al., 1989). Thalidomide is a proven inhibitor of the biological synthesis of TNF-a (Sampaio et al., 1991) and is believed to rely on this action for its suppression of the wasting of tissue which accompanies RA. Oral administration of thalidomide has proven to be effective in RA, but unacceptable side effects are easily provoked (Gutierrez-Rodriguez, 1984). Administration of thalidomide via the dermal route can down-regulate TNF-a production in and around the affected joint, and this without raising the systemic blood level to a problematical level. Based on thalidomide's physicochemical properties, it is unlikely that it can be delivered percutaneously at a dose required for RA. Therefore, we have embraced the idea of using N-alkyl analogues of thalidomide. The most important feature that an analogue of this compound might contribute is decreased crystallinity and increased lipophilicity. Ordinarily both these parameters should favour percutaneous delivery. The current study was primarily aimed at exploring the feasibility of percutaneous delivery of thalidomide and subsequently, three of its odd chain IV-alkyl analogues (methyl, propyl and pentyl) via physicochemical characterization and assessment of their innate abilities to diffuse through skin as an initial step towards developing a topical dosage form for the best compound. The biological activities, more specifically their potential to inhibit the production of TNF-a was determined for thalidomide and its N-alkyl analogues. In order to achieve the objectives, the study was undertaken by synthesizing and determining the physicochemical parameters of thalidomide and its N-alkyl analogues. A high level of crystallinity is expressed in the form of a high melting point and heat of fusion. This limits solubility itself, and thus also sets a limit on mass transfer across the skin. Generally, the greater a drug's innate tendency to dissolve, the more likely it is that the drug can be delivered at an appropriate rate across the skin (Ostrenga et al., 1971). Therefore, the melting points and heats of fusion were determined by differential scanning calorimetry. Aqueous solubility and the partition coefficient (relative solubility) are major determinants of a drug's dissolution, distribution and availability. N-octanollwater partition coefficients were determined at pH 6.4. Solubilities in water, a series of n-alcohols and mixed solvents were obtained, as well as the solubility parameters of the compounds in study. Secondly, in vitro permeation studies were performed from these solvents and vehicles using vertical Franz diffusion cells with human epidermal membranes. Thirdly, tumour necrosis factor-alpha (TNF-a) inhibition activities were assessed for thalidomide and its N-alkyl analogues. By adding a methyl group to the thalidomide structure, the melting point drops by over 100°C and, in this particular instance upon increasing the alkyl chain length to five -CH2- units the melting points decrease linearly. Heats of fusion decreased dramatically upon thalidomide's alkylation as well. Methylation of the thalidomide molecule enhanced the aqueous solubility 6-fold, but as the alkyl chain length is further extended from methyl to pentyl, the aqueous solubility decreased exponentially. The destabilization of the crystalline structure with increasing alkyl chain length led to an increase in lipophilicity and consequently an increase in solubility in nonpolar media. Log partition coefficients increased linearly with increasing alkyl chain length. Solubilities in a series of n-alcohols, methanol through dodecanol, were found to be in the order of pentyl > propyl > methyl > thalidomide. The N-alkyl analogues have more favourable physicochemical properties than thalidomide to be delivered percutaneously. The in vitro skin permeation data proved that the analogues can be delivered far easier than thalidomide itself. N-methyl thalidomide showed the highest steady-state flux through human skin from water, n-alcohols and combination vehicles. Thalidomide and its N-alkyl analogues were all active as TNF-a inhibitors. Finally, active as a TNF-a inhibitor, N-methyl thalidomide is the most promising candidate to be delivered percutaneously for treatment of rheumatoid arthritis, of those studied. / Thesis (PhD (Pharmaceutics))--PU for CHE, 1999.

Page generated in 0.0605 seconds