• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Métastases hépatiques de tumeurs endocrines digestives : développement de modèles animaux pour l’étude des mécanismes biologiques et l’évaluation préclinique des thérapeutiques / Liver metastasis of digestive endocrine tumors : development of animal models for the study of biological mechanisms and the preclinical evaluation of the therapeutic

Walter, Thomas 10 November 2010 (has links)
Les métastases hépatiques de tumeurs endocrines digestives sont hypervasculaires et hétérogènes. Les mécanismes de développement de ces métastases hépatiques, en particulier le rôle de l’angiogenèse tumorale associée à ces tumeurs, sont complexes. Ceci explique la difficulté de prédire le profil évolutif de ces tumeurs et de trouver des facteurs prédictifs de réponses aux traitements médicaux utilisés. L’objectif de notre travail a été de mieux comprendre : le rôle de l’angiogenèse dans le développement des métastases hépatiques de tumeurs endocrines digestives ; les mécanismes d’actions et en particulier leur activité anti-angiogénique, de deux types de molécules (analogue de la somatostatine et inhibiteur de mTOR). Nos résultats nous ont permis à travers une double approche expérimentale, in vitro et in vivo de : (a) montrer la complexité de la régulation de la synthèse et de la sécrétion du VEGF par les cellules endocrines néoplasiques ; (b) confirmer expérimentalement la dissociation entre expression du VEGF et capacités angiogéniques d’une part, propriétés invasives et métastatiques d’autre part, dans les tumeurs endocrines digestives ; (c) montrer expérimentalement que l’inhibition de l’angiogenèse peut contribuer à l’effet anti-tumoral de substances d’intérêt thérapeutique dans les tumeurs endocrines digestives / Liver metastases of digestive endocrine tumors are hypervascular and heterogeneous. The mechanisms of development of these metastases, especially the role of angiogenesis, are complex. This explains the difficulty to predict the natural history of these tumors and to find predictive factors of response to medical treatments. Our aim was to evaluate: the role of angiogenesis in the development of liver metastasis from digestive endocrine tumors; mechanisms of action, especially antiangiogenic activity, of two drugs (somatostatin analogues and mTOR inhibitor). We were able to demonstrate through an in vitro and in vivo experimental approach that: (a) the regulation of VEGF synthesis and secretion is complex, with different roles according to the cell studied; (b) there is a dissociation between VEGF expression and angiogenic capacities, on one hand, and invasive and metastatic properties, on the other hand; (c) the inhibition of angiogenesis may contribute to the anti-tumoral effect of several drugs of therapeutic interest in digestive endocrine tumors
2

Somatostatin Receptor Expression and Biological Functions in Endocrine Pancreatic Cells

Ludvigsen, Eva January 2006 (has links)
<p>Type 1 diabetes is resulting from the selective destruction of insulin-producing beta-cells within the pancreatic islets. Somatostatin acts as an inhibitor of hormone secretion through specific receptors (sst1-5).</p><p>All ssts were expressed in normal rat and mouse pancreatic islets, although the expression intensity and the co-expression pattern varied between ssts as well as between species. This may reflect a difference in response to somatostatin in islet cells of the two species.</p><p>The Non-Obese Diabetic (NOD) mouse model is an experimental model of type 1 diabetes, with insulitis accompanied by spontaneous hyperglycaemia. Pancreatic specimens from NOD mice at different age and stage of disease were stained for ssts. The islet cells of diabetic NOD mice showed increased islet expression of sst2-5 compared to normoglycemic NOD mice. The increase in sst2-5 expression in the islets cells may suggest either a contributing factor in the process leading to diabetes, or a defense response against ongoing beta-cell destruction.</p><p>Somatostatin analogues were tested on a human endocrine pancreatic tumour cell line and cultured pancreatic islets. Somatostatin analogues had an effect on cAMP accumulation, chromogranin A secretion and MAP kinase activity in the cell line. Treatment of rat pancreatic islets with somatostatin analogues with selective receptor affinity was not sufficient to induce an inhibition of insulin and glucagon secretion. However, a combination of selective analogues or non-selective analogues via co-stimulation of receptors can cause inhibition of hormone production. For insulin and glucagon, combinations of sst2 + sst5 and sst1 + sst2, respectively, showed a biological effect.</p><p>In summary, knowledge of islet cell ssts expression and the effect of somatostatin analogues with high affinity to ssts may be valuable in the future attempts to influence beta-cell function in type 1 diabetes mellitus, since down-regulation of beta-cell function may promote survival of these cells during the autoimmune attack. </p>
3

Somatostatin Receptor Expression and Biological Functions in Endocrine Pancreatic Cells

Ludvigsen, Eva January 2006 (has links)
Type 1 diabetes is resulting from the selective destruction of insulin-producing beta-cells within the pancreatic islets. Somatostatin acts as an inhibitor of hormone secretion through specific receptors (sst1-5). All ssts were expressed in normal rat and mouse pancreatic islets, although the expression intensity and the co-expression pattern varied between ssts as well as between species. This may reflect a difference in response to somatostatin in islet cells of the two species. The Non-Obese Diabetic (NOD) mouse model is an experimental model of type 1 diabetes, with insulitis accompanied by spontaneous hyperglycaemia. Pancreatic specimens from NOD mice at different age and stage of disease were stained for ssts. The islet cells of diabetic NOD mice showed increased islet expression of sst2-5 compared to normoglycemic NOD mice. The increase in sst2-5 expression in the islets cells may suggest either a contributing factor in the process leading to diabetes, or a defense response against ongoing beta-cell destruction. Somatostatin analogues were tested on a human endocrine pancreatic tumour cell line and cultured pancreatic islets. Somatostatin analogues had an effect on cAMP accumulation, chromogranin A secretion and MAP kinase activity in the cell line. Treatment of rat pancreatic islets with somatostatin analogues with selective receptor affinity was not sufficient to induce an inhibition of insulin and glucagon secretion. However, a combination of selective analogues or non-selective analogues via co-stimulation of receptors can cause inhibition of hormone production. For insulin and glucagon, combinations of sst2 + sst5 and sst1 + sst2, respectively, showed a biological effect. In summary, knowledge of islet cell ssts expression and the effect of somatostatin analogues with high affinity to ssts may be valuable in the future attempts to influence beta-cell function in type 1 diabetes mellitus, since down-regulation of beta-cell function may promote survival of these cells during the autoimmune attack.

Page generated in 0.0935 seconds