Spelling suggestions: "subject:"ionic logging""
1 |
Single-hole sonic logging - A study of possibilities and limitations of detecting flaws in pilesPalm, Martin January 2012 (has links)
As a part of the Dutch development program Geo-impulse, which aims to half the occurrence of geotechnical failures in civil engineering projects inside the Netherlands by 2015, this master thesis is investigating how to trace imperfections in bored piles at an early stage. The objective is to carry out literature study on suitable methods and then focus the research on one particular method. The basis of the research is the single-hole sonic logging method. Field and laboratory measurements are carried out with the aim to investigate the detection range of the method as well as try to apply more advanced post-processing techniques. Results from the measurements are discussed and also a comparison between single-hole sonic logging and the better standardized test cross-hole sonic logging is made. The results indicate that single-hole sonic logging has a small detection range inside a bored pile, especially compared to cross-hole sonic logging. Also more advanced post-processing techniques fails or make the test to advance to use on a daily basis. Finally the recommendation is to carry on research with other techniques which in scientific papers have showed some promising results.
|
2 |
VELOCITY ANALYSIS OF LWD AND WIRELINE SONIC DATA IN HYDRATE-BEARING SEDIMENTS ON THE CASCADIA MARGINGoldberg, David, Guerin, Gilles, Malinverno, Alberto, Cook, Ann 07 1900 (has links)
Downhole acoustic data were acquired in very low-velocity, hydrate-bearing formations at five
sites drilled on the Cascadia Margin during the Integrated Ocean Drilling Program (IODP)
Expedition 311. P-wave velocity in marine sediments typically increases with depth as porosity
decreases because of compaction. In general, Vp increases from ~1.6 at the seafloor to ~2.0 km/s
~300 m below seafloor at these sites. Gas hydrate-bearing intervals appear as high-velocity
anomalies over this trend because solid hydrates stiffen the sediment. Logging-while-drilling
(LWD) sonic technology, however, is challenged to recover accurate P-wave velocity in shallow
sediments where velocities are low and approach the fluid velocity. Low formation Vp make the
analysis of LWD sonic data difficult because of the strong effects of leaky-P wave modes, which
typically have high amplitudes and are dispersive. We examine the frequency dispersion of
borehole leaky-P modes and establish a minimum depth (approx 50-100 m) below the seafloor at
each site where Vp can be accurately estimated using LWD data. Below this depth, Vp estimates
from LWD sonic data compare well with wireline sonic logs and VSP interval velocities in
nearby holes, but differ in detail due to local heterogeneity. We derive hydrate saturation using
published models and the best estimate of Vp at these sites and compare results with independent
resistivity-derived saturations.
|
Page generated in 0.0489 seconds