• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algèbres planaires et sous-algèbres maximales abéliennes dans les algèbres de von Neumann

Brothier, Arnaud 28 September 2011 (has links) (PDF)
Cette thèse présente des résultats sur les algèbres planaires et les sous-algèbres maximales abéliennes dans des algèbres de von Neumann. Les deux premiers chapitres portent sur une construction qui, à une algèbre planaire d'un sous-facteur, associe un facteur II1. Dans le premier chapitre, on définit une classe d'algèbres planaires, qualifiées de non coloriées, qui est adaptée à la théorie des probabilités libres. De plus cette classe contient la classe des algèbres planaires d'un sous-facteur. On montre qu'à toute algèbre planaire non coloriée on peut associer une algèbre de von Neumann. Le résultat principal est que cette algèbre de von Neumann est un facteur II1. Dans le deuxième chapitre, on considère le facteur II1 construit à partir d'une algèbre planaire d'un sous-facteur. On considère une sous-algèbre maximale abélienne génériquement associée à l'algèbre planaire. Le résultat principal est que cette sous-algèbre maximale abélienne est maximale hyperfinie. Dans le troisième chapitre, on considère un invariant introduit par Takesaki pour des sous-algèbres maximales abéliennes. Le résultat principal est de montrer que cet invariant est obtenu par l'action du normalisateur. En particulier, on répond à une question de Takesaki en montrant que toute sous-algèbre maximale abélienne singulière est simple.

Page generated in 0.0833 seconds