• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating Biosphere-Atmosphere Interactions from Leaf to Atmospheric Boundary Layer Scales

Juang, Jehn-Yih 14 March 2007 (has links)
The interaction between terrestrial ecosystems and the atmosphere continues to be a central research theme within climate, hydrology, and ecology communities. This interest is stimulated by research issues pertinent to both the fundamental laws and the hierarchy of scales. To further explorer such topics over various spatial and temporal domains, in this study, biosphere-atmosphere interactions are studied at two different scales, leaf-to-canopy and canopy-to-atmospheric boundary-layer (ABL) scales, by utilizing both models and long-term measurements collected from the Duke Forest AmeriFlux sites. For the leaf-to-canopy scale, two classical problems motivated by contemporary applications are considered: (1) ‘inverse problem’ – determination of nighttime ecosystem respiration, and (2) forward problem – estimation of two-way interactions between leaves and their microclimate ‘’. An Eulerian inverse approach was developed to separate aboveground respiration from forest floor efflux using mean CO2 concentration and air temperature profiles within the canopy using detailed turbulent transport theories. The forward approach started with the assumption that canopy physiological, drag, and radiative properties are known. The complexity in the turbulent transport model needed for resolving the two-way interactions was then explored. This analysis considered a detailed multi-layer ecophysiological and radiative model embedded in a hierarchy of Eulerian turbulent closure schemes ranging from well-mixed assumption to third order closure schemes with local thermal-stratification within the canopy. For the canopy-to-ABL scale, this study mainly explored problems pertinent to the impact of the ecophysiological controls on the regional environment. First, the possible combinations of water states (soil moisture and atmospheric humidity) that trigger convective rainfall were investigated, and a distinct ‘envelope’ of these combinations emerged from the measurements. Second, an analytical model as a function of atmospheric and ecophysiological properties was proposed to examine how the potential to trigger convective rainfall shifts over different land-covers. The results suggest that pine plantation, whose area is projected to dramatically increase in the Southeastern US (SE), has greater potential to trigger convective rainfall than the other two ecosystems. Finally, the interplay between ecophysiological and radiative attributes on surface temperature, in the context of regional cooling/warming, was investigated for projected land-use changes in the SE region. / Dissertation
2

Near Real-time Seasonal Drought Forecasting and Retrospective Drought Analysis using Simulated Multi- layer Soil Moisture from Hydrological Models at Sub- Watershed Scales

Sehgal, Vinit 28 July 2017 (has links)
This study proposes a stratified approach of drought severity assessment using multi-layer simulated soil moisture. SWAT (Soil and Water Assessment Tool) models are calibrated for 50 watersheds in the South-Atlantic Gulf region of the Southeastern US and a high-resolution daily soil moisture dataset is obtained at Hydrologic Unit Code (HUC-12) resolution for a period of January 1982 through December 2013. A near real-time hydrologic simulation framework by coupling the calibrated SWAT models with the National Centers for Environmental Prediction (NCEP) coupled forecast system model version 2 (CFSv2) weather data is developed to forecast various water balance components including soil moisture (SM), actual evapotranspiration (ET), potential evapotranspiration ET (PET), and runoff (SURQ) for near-real time drought severity assessment, and drought forecasting for a lead of 9-months. A combination of the surface and total rooting depth soil moisture percentiles proves to be an effective increment over conventional drought assessment approaches in capturing both, transient and long-term drought impacts. The proposed real-time drought monitoring approach shows high accuracy in capturing drought onset and propagation and shows a high degree of similarity with the U.S. Drought Monitor (USDM), the long-term (PDSI, PHDI, SPI-9 and SPI-12), and the short-term (Palmer Z index, SPI-1 and SPI-6) drought indices. / Master of Science
3

The sources, formation and properties of soluble organic aerosols: results from ambient measurements in the southeastern united states and the los angeles basin

Zhang, Xiaolu 03 July 2012 (has links)
900 archived FRM filters from 15 sites over the southeast during 2007 were analyzed for PM2.5 chemical composition and physical properties. Secondary components (i.e. sulfate aerosol and SOA) were the major contributors to the PM2.5 mass over the southeast, whereas the contribution from biomass burning varied with season and was negligible (2%) during summer. Excluding biomass burning influence, FRM WSOC was spatially homogeneous throughout the region, similar to sulfate, yet WSOC was moderately enhanced in locations of greater predicted isoprene emissions in summer. On smaller spatial scale, a substantial urban/rural gradient of WSOC was found through comparisons of online WSOC measurements at one urban/rural pair (Atlanta/Yorkville) in August 2008, indicating important contribution from anthropogenic emissions. A comparative study between Atlanta and LA reveals a number of contrasting features between two cities. WSOC gas-particle partitioning, investigated through the fraction of total WSOC in the particle phase, Fp, exhibited differing relationships with ambient RH and organic aerosols. In Atlanta, both particle water and organic aerosol (OA) can serve as an absorbing phase. In contrast, in LA the aerosol water was not an important absorbing phase, instead, Fp was correlated with OA mass. Fresh LA WSOC had a consistent brown color and a bulk absorption per soluble carbon mass at 365 nm that was 4 to 6 times higher than freshly-formed Atlanta soluble organic carbon. Interpreting soluble brown carbon as a property of freshly-formed anthropogenic SOA, the difference in absorption per carbon mass between the two cities suggests most WSOC formed within Atlanta is not from an anthropogenic process similar to LA.
4

Development of a Healthcare Genetics and Genomics Graduate Certificate Program at a University in Southeastern US

Sargsyan, Alex 13 November 2020 (has links)
No description available.
5

Analysis of Humeral and Femoral Cross-Sectional Properties at Morton Shell Mound (16IB3)

Zaleski, Sarah Marie 14 December 2013 (has links)
Using the concept of bone functional adaptation, this study analyzes femoral and humeral cross-sectional properties of human skeletal materials from Morton Shell Mound on the Louisiana coast. This work helps fill a gap in such analyses in the southern U.S. and contributes to an understanding of the functional adaptation of the human skeleton. Properties were compared to those of other prehistoric Southeastern fisher-hunter-gatherers from Gold Mine, Plash Island, and several Georgia coast sites to assess mobility and activity patterns among inland and coastal groups. Less sexual dimorphism of femoral midshaft shape among coastal Morton and Plash, compared to inland Gold Mine, indicates lower terrestrial logistic mobility. Greater robusticity (not significant) in coastal samples is linked to an expanded subpersiosteum, rather than terrestrial logistic mobility. Both coastal and inland samples exhibit round humeral shape, typical of fisher-hunter-gatherers.

Page generated in 0.0648 seconds