1 |
The effect of climate on the decomposition of chemical constituents of tree littersMcTiernan, Kevin B. January 1998 (has links)
No description available.
|
2 |
Investigating Biosphere-Atmosphere Interactions from Leaf to Atmospheric Boundary Layer ScalesJuang, Jehn-Yih 14 March 2007 (has links)
The interaction between terrestrial ecosystems and the atmosphere continues to be
a central research theme within climate, hydrology, and ecology communities. This
interest is stimulated by research issues pertinent to both the fundamental laws and the
hierarchy of scales. To further explorer such topics over various spatial and temporal
domains, in this study, biosphere-atmosphere interactions are studied at two different
scales, leaf-to-canopy and canopy-to-atmospheric boundary-layer (ABL) scales, by
utilizing both models and long-term measurements collected from the Duke Forest
AmeriFlux sites.
For the leaf-to-canopy scale, two classical problems motivated by contemporary
applications are considered: (1) ‘inverse problem’ – determination of nighttime
ecosystem respiration, and (2) forward problem – estimation of two-way interactions
between leaves and their microclimate ‘’. An Eulerian inverse approach was developed to
separate aboveground respiration from forest floor efflux using mean CO2 concentration
and air temperature profiles within the canopy using detailed turbulent transport theories.
The forward approach started with the assumption that canopy physiological, drag, and
radiative properties are known. The complexity in the turbulent transport model needed
for resolving the two-way interactions was then explored. This analysis considered a
detailed multi-layer ecophysiological and radiative model embedded in a hierarchy of
Eulerian turbulent closure schemes ranging from well-mixed assumption to third order
closure schemes with local thermal-stratification within the canopy.
For the canopy-to-ABL scale, this study mainly explored problems pertinent to
the impact of the ecophysiological controls on the regional environment. First, the
possible combinations of water states (soil moisture and atmospheric humidity) that
trigger convective rainfall were investigated, and a distinct ‘envelope’ of these
combinations emerged from the measurements. Second, an analytical model as a function
of atmospheric and ecophysiological properties was proposed to examine how the
potential to trigger convective rainfall shifts over different land-covers. The results
suggest that pine plantation, whose area is projected to dramatically increase in the
Southeastern US (SE), has greater potential to trigger convective rainfall than the other
two ecosystems. Finally, the interplay between ecophysiological and radiative attributes
on surface temperature, in the context of regional cooling/warming, was investigated for
projected land-use changes in the SE region. / Dissertation
|
3 |
Global warming : carbon-nutrient interactions and warming effects on soil carbon dynamicsAsandei, Ancuta January 2014 (has links)
In order to predict how terrestrial ecosystems will respond to global change, there is growing recognition that we need to better understand linkages between plant and soil processes. Previously the factors and processes with potential to influence the terrestrial carbon (C) cycle have been investigated in isolation from each other. This study investigated the interactions of nutrient availability and warming in controlling the soil carbon dynamics, with regards to the fate of already sequestered carbon in soil, under conditions of increasing atmospheric temperatures. The project objectives were addressed by three independent experiments designed to explain specific components of the carbon-nutrient cycle interactions, and the findings brought together to describe the implications for future soil carbon storage. The main measurements collected throughout this project included soil carbon dioxide (CO2) fluxes, partitioned into autotrophic and heterotrophic components, net ecosystem exchange and respiration fluxes, and background soil moisture and temperature data, backed by gas, soil and biomass analyses. In the two field experiments, these measurements were taken from plots with or without any inorganic nutrient additions or in the presence or absence of legumes providing biological nitrogen addition to the ecosystem. In the laboratory, temperature and nutrient availability were manipulated within the ecosystem. The reduction in decomposition rates, without reduction of productivity as a result of inorganic nutrient additions, indicated the potential for increasing C storage. There was also evidence that nutrient availability controls the strength of the link between plant and soil processes in semi-natural grasslands. The yields, decomposition rates and soil C fluxes recorded in the presence and absence of legumes provided some evidence of N2 fixation, improving ecosystem productivity and soil properties while reducing soil C effluxes, in a managed grassland. In the laboratory, the warming of soils from lysimeters with and without plants, receiving or not receiving fertiliser, supported the findings from field experiments regarding the importance of the soil-plant link in controlling C fluxes. However, C stocks and δ13C analyses showed that over a year’s worth of warming and nutrient manipulations made little difference to the amount of C stored in the soil, indicating that edaphic factors have greater control over the response of C dynamics to increased temperatures.
|
4 |
Response of Soils and Soil Ecosystems to the Pennsylvanian-Permian Climate Transitionin the Upper Fluvial Plain of the Dunkard Basin, Southeastern Ohio, USACarnes, Jennifer L. 14 September 2017 (has links)
No description available.
|
5 |
Fire, Exotic Earthworms and Plant Litter Decomposition in the Landscape ContextGiai, Carla 27 August 2009 (has links)
No description available.
|
Page generated in 0.1056 seconds