• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of Compliant Space Mechanisms with Application to the Design of a Large-Displacement Monolithic Compliant Rotational Hinge

Fowler, Robert McIntyre 28 June 2012 (has links) (PDF)
The purpose of this research is to investigate the use of compliant mechanisms in space applications and design, analyze, and test a compliant space mechanism. Current space mechanisms are already highly refined and it is unclear if significant improvements in performance can be made by continuing to refine current designs. Compliant mechanisms offer a promising opportunity to change the fundamental approach to achieving controlled motion in space systems and have potential for dramatic increases in mechanism performance given the constraints of the space environment. A compliant deployment hinge was selected for development after industry input was gathered. Concepts for large-displacement compliant hinges are investigated. A design process was developed that links the performance requirements of deployment to the design parameters of a deployment hinge. A large-displacement monolithic compliant rotational hinge, the Flex-16, is designed, analyzed, and tested. It was developed for possible application as a spacecraft deployment hinge and designs were developed using three different materials (polypropylene, titanium, and carbon nanotubes) and manufacturing processes (CNC milling, electron beam manufacturing metal rapid prototyping, and a carbon nanotube framework) on two size scales (macro and micro). A parametric finite element model allowed for prediction of prototype behavior before fabrication. The Flex-16 hinge is capable of 90 degrees of deflection without failure or contact and can be designed to meet industry requirements for space.
2

Fully Compliant Mechanisms for Bearing Subtraction in Robotics and Space Applications

Merriam, Ezekiel G. 23 April 2013 (has links) (PDF)
Robotics and space applications represent areas where compliant mechanisms can continue to make a significant impact by reducing costs and weight while improving performance. Because of the nature of these applications, a common need is for bearing replacement mechanisms, or mechanisms that perform the function of a bearing without the complexity and failure modes associated with bearings. Static balancing is a design strategy that attempts to reduce the actuation effort of a mechanism, and has been applied to compliant mechanisms in some applications. Monolithic construction, especially by means of 3D printing technology, is a strategy whereby the mechanism links and joints are built as a single "chunk" of material. This eliminates assembly and failure modes associated with wear and friction in traditional joints. In this work we examine these design strategies in the context of robotics and space applications. Matlab and Ansys batch files can be found in Appendix A. A fully compliant zero-torque, statically balanced mechanism is described that can undergo greater than 100 of motion. Because compliant mechanisms achieve their motion from the deflection of their constituent members, there is some strain energy associated with actuated positions. By introducing an appropriate pre-load, strain energy can be held constant. This can reduce or nearly eliminate the input force required from the actuating device. This paper describes the statically balanced rotary joint concept, and demonstrates its optimization, testing, and implementation for a haptic pantograph mechanism. The statically balanced properties of the constituent joints result in a mechanism with two balanced degrees of freedom. Matlab and Ansys batch files can be found in Appendix B. The conception, modeling, and development of a fully compliant two-degree-of-freedom pointing mechanism for application in spacecraft thruster, antenna, or solar array systems is described. The design objectives and the advantages of a compliant solution are briefly discussed. A single design concept is selected for final development from a field of generated concepts. Analytical and numerical models are accompanied by prototype testing and measurements in several iterations. A final design is described in detail, a fully compliant prototype is fabricated in titanium, and its performance is measured.
3

Design of the Hold-Down and Release System for the Concur™ Solar Array Wing

Kiewiet, Luca January 2017 (has links)
No description available.

Page generated in 0.0792 seconds