1 |
Trajectory Optimisation of a Spacecraft Swarm Maximising Gravitational Signal / Banoptimering av en Rymdfarkostsvärm för att Maximera GravitationsignalenMaråk, Rasmus January 2023 (has links)
Proper modelling of the gravitational fields of irregularly shaped asteroids and comets is an essential yet challenging part of any spacecraft visit and flyby to these bodies. Accurate density representations provide crucial information for proximity missions, which rely heavily on it to design safe and efficient trajectories. This work explores using a spacecraft swarm to maximise the measured gravitational signal in a hypothetical mission around the comet 67P/Churyumov-Gerasimenko. Spacecraft trajectories are simultaneously computed and evaluated using a high-order numerical integrator and an evolutionary optimisation method to maximise overall signal return. The propagation is based on an open-source polyhedral gravity model using a detailed mesh of 67P/C-G and considers the comet’s sidereal rotation. We compare performance on various mission scenarios using one and four spacecraft. The results show that the swarm achieved an expected increase in coverage over a single spacecraft when considering a fixed mission duration. However, optimising for a single spacecraft results in a more effective trajectory. The impact of dimensionality is further studied by introducing an iterative local search strategy, resulting in a generally improved robustness for finding efficient solutions. Overall, this work serves as a testbed for designing a set of trajectories in particularly complex gravitational environments, balancing measured signals and risks in a swarm scenario. / En korrekt modellering av de gravitationsfält som uppstår runt irreguljärt formade asteroider och kometer är en avgörande och utmanande del för alla uppdrag till likartade himlakroppar. Exakta densitetsrepresentationer tillhandahåller viktig information för att säkerställa säkra och effektiva rutter för särsilt närgående rymdfarkoster. I denna studie utforskar vi användningen av en svärm av rymdfarkoster för att maximera den uppmätta gravitationssignalen i ett hypotetisk uppdrag runt kometen 67P/Churyumov-Gerasimenko. Rymdfarkosternas banor beräknas och utvärderas i parallella scheman med hjälp av en högre ordningens numerisk integration och en evolutionär optimeringsmetod i syfte att maximera den totala uppmätta signalen. Beräkningarna baseras på en öppen källkod för en polyhedral gravitationsmodell som använder ett detaljerat rutnät av triangulära polygoner för att representera 67P/C-G och beaktar kometens egna rotation. Vi jämför sedan prestanden för olika uppdragscenarier med en respektive fyra rymdfarkoster. Resultaten visar att svärmen uppnådde en förväntad ökning i täckning jämfört med en enskild rymdfarkost under en fast uppdragsvaraktighet. Dock resulterar optimering för en enskild rymdfarkost i en mer effektiv bana. Påverkan av dimensionshöjningen hos oberoende variabler studeras vidare genom att introducera en iterativ lokal sökstrategi, vilket resulterar i en generellt förbättrad robusthet samt effektivare lösningar. Sammantaget fungerar detta arbete som en testbädd för att studera och utforma rymdfarkosters banor i särskilt komplexa gravitationsmiljöer, samt för att balansera uppmätta signaler och risker i ett svärmscenario.
|
Page generated in 0.0677 seconds