• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Roles of Heparan Sulfate in Amyloid-β Pathology and Hypoxia

Hjertström, Elina January 2011 (has links)
Heparan sulfate (HS) is a highly sulfated polysaccharide expressed on the cell surface and in the extracellular matrix, interacting with a large number of proteins. HS is implicated in human diseases, including different types of cancer and amyloid diseases such as Alzheimer's disease (AD). The aims of this thesis were to gain deeper insights into AD and cancer progression by elucidating the roles of HS in amyloid-β (Aβ) pathology and hypoxia. The toxic Aβ-peptide is a key molecule in AD due to its ability to aggregate and form amyloid plaques in the brains of diseased patients. It has been reported that HS accumulates with Aβ in these amyloid plaques. We have found that HS is differentially accumulated with Aβ species within the amyloid plaques in the brains of AD patients. We also identified that the HS in the plaques originated from glial cells. Further, we investigated the role of HS in Aβ toxicity using cell models that either lack HS or express abnormal HS. The results show that cell surface HS mediates Aβ internalization and cytotoxicity. Upregulation of heparanase, an endo-glucuronidase that specifically cleaves HS chains, in human cancers increases the potential of tumor cells to metastasize. Spalax, an animal model for hypoxic tolerance, expresses high levels of heparanase. Analysis of HS from different Spalax organs revealed a high sulfation degree and an atypical domain structure, likely modulated by high heparanase expression in the organs. Cells cultured under hypoxic conditions showed a similar HS domain structure and had an increase in heparanase mRNA. We propose that hypoxia-induced heparanase expression is relevant for tumor progression, a process often associated with oxygen deficiency. Altogether, the findings in this thesis are important for future development of therapeutics aiming at interfering with HS functions in AD and cancer.

Page generated in 0.0401 seconds