• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 13
  • 13
  • 12
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Spam filter for SMS-traffic

Fredborg, Johan January 2013 (has links)
Communication through text messaging, SMS (Short Message Service), is nowadays a huge industry with billions of active users. Because of the huge userbase it has attracted many companies trying to market themselves through unsolicited messages in this medium in the same way as was previously done through email. This is such a common phenomenon that SMS spam has now become a plague in many countries. This report evaluates several established machine learning algorithms to see how well they can be applied to the problem of filtering unsolicited SMS messages. Each filter is mainly evaluated by analyzing the accuracy of the filters on stored message data. The report also discusses and compares requirements for hardware versus performance measured by how many messages that can be evaluated in a fixed amount of time. The results from the evaluation shows that a decision tree filter is the best choice of the filters evaluated. It has the highest accuracy as well as a high enough process rate of messages to be applicable. The decision tree filter which was found to be the most suitable for the task in this environment has been implemented. The accuracy in this new implementation is shown to be as high as the implementation used for the evaluation of this filter. Though the decision tree filter is shown to be the best choice of the filters evaluated it turned out the accuracy is not high enough to meet the specified requirements. It however shows promising results for further testing in this area by using improved methods on the best performing algorithms.
12

Mitigating spam using network-level features

Ramachandran, Anirudh Vadakkedath 04 August 2011 (has links)
Spam is an increasing menace in email: 90% of email is spam, and over 90% of spam is sent by botnets---networks of compromised computers under the control of miscreants. In this dissertation, we introduce email spam filtering using network-level features of spammers. Network-level features are based on lightweight measurements that can be made in the network, often without processing or storing a message. These features stay relevant for longer periods, are harder for criminals to alter at will (e.g., a bot cannot act independently of other bots in the botnet), and afford the unique opportunity to observe the coordinated behavior of spammers. We find that widely-used IP address-based reputation systems (e.g., IP blacklists) cannot keep up with the threats of spam from previously unseen IP addresses, and from new and stealthy attacks---to thwart IP-based reputation systems, spammers are reconnoitering IP Blacklists and sending spam from hijacked IP address space. Finally, spammers are "gaming" collaborative filtering by users in Web-based email by casting fraudulent "Not Spam" votes on spam email. We present three systems that detect each attack that uses spammer behavior rather than their IP address. First, we present IP blacklist counter-intelligence, a system that can passively enumerate spammers performing IP blacklist reconnaissance. Second, we present SpamTracker, a system that distinguishes spammers from legitimate senders by applying clustering on the set of domains to which email is sent. Third, we analyze vote-gaming attacks in large Web-based email systems that pollutes user feedback on spam emails, and present an efficient clustering-based method to mitigate such attacks.
13

Policy-controlled email services

Kaushik, Saket. January 2007 (has links)
Thesis (Ph. D.)--George Mason University, 2007. / Title from PDF t.p. (viewed Jan. 18, 2008). Thesis directors: Paul Amman, Duminda Wijesekera. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Information Technology. Vita: p. 198. Includes bibliographical references (p. 189-197). Also available in print.
14

E-shape analysis

Sroufe, Paul. Dantu, Ram, January 2009 (has links)
Thesis (M.S.)--University of North Texas, Dec., 2009. / Title from title page display. Includes bibliographical references.
15

Automatic identification and removal of low quality online information

Webb, Steve. January 2008 (has links)
Thesis (Ph.D)--Computing, Georgia Institute of Technology, 2009. / Committee Chair: Pu, Calton; Committee Member: Ahamad, Mustaque; Committee Member: Feamster, Nick; Committee Member: Liu, Ling; Committee Member: Wu, Shyhtsun Felix. Part of the SMARTech Electronic Thesis and Dissertation Collection.
16

Transactional behaviour based spam detection /

Choi, Thomas, January 1900 (has links)
Thesis (M.App.Sc.) - Carleton University, 2007. / Includes bibliographical references (p. 119-126). Also available in electronic format on the Internet.
17

Phishing Warden : enhancing content-triggered trust negotiation to prevent phishing attacks /

Henshaw, James Presley, January 2005 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Computer Science, 2005. / Includes bibliographical references (p. 47-50).
18

Models to Combat Email Spam Botnets and Unwanted Phone Calls

Husna, Husain 05 1900 (has links)
With the amount of email spam received these days it is hard to imagine that spammers act individually. Nowadays, most of the spam emails have been sent from a collection of compromised machines controlled by some spammers. These compromised computers are often called bots, using which the spammers can send massive volume of spam within a short period of time. The motivation of this work is to understand and analyze the behavior of spammers through a large collection of spam mails. My research examined a the data set collected over a 2.5-year period and developed an algorithm which would give the botnet features and then classify them into various groups. Principal component analysis was used to study the association patterns of group of spammers and the individual behavior of a spammer in a given domain. This is based on the features which capture maximum variance of information we have clustered. Presence information is a growing tool towards more efficient communication and providing new services and features within a business setting and much more. The main contribution in my thesis is to propose the willingness estimator that can estimate the callee's willingness without his/her involvement, the model estimates willingness level based on call history. Finally, the accuracy of the proposed willingness estimator is validated with the actual call logs.
19

Spamming mobile botnet detection using computational intelligence

Vural, Ickin January 2013 (has links)
This dissertation explores a new challenge to digital systems posed by the adaptation of mobile devices and proposes a countermeasure to secure systems against threats to this new digital ecosystem. The study provides the reader with background on the topics of spam, Botnets and machine learning before tackling the issue of mobile spam. The study presents the reader with a three tier model that uses machine learning techniques to combat spamming mobile Botnets. The three tier model is then developed into a prototype and demonstrated to the reader using test scenarios. Finally, this dissertation critically discusses the advantages of having using the three tier model to combat spamming Botnets. / Dissertation (MSc)--University of Pretoria, 2013. / gm2014 / Computer Science / unrestricted
20

Improving Filtering of Email Phishing Attacks by Using Three-Way Text Classifiers

Trevino, Alberto 13 March 2012 (has links) (PDF)
The Internet has been plagued with endless spam for over 15 years. However, in the last five years spam has morphed from an annoying advertising tool to a social engineering attack vector. Much of today's unwanted email tries to deceive users into replying with passwords, bank account information, or to visit malicious sites which steal login credentials and spread malware. These email-based attacks are known as phishing attacks. Much has been published about these attacks which try to appear real not only to users and subsequently, spam filters. Several sources indicate traditional content filters have a hard time detecting phishing attacks because the emails lack the traditional features and characteristics of spam messages. This thesis tests the hypothesis that by separating the messages into three categories (ham, spam and phish) content filters will yield better filtering performance. Even though experimentation showed three-way classification did not improve performance, several additional premises were tested, including the validity of the claim that phishing emails are too much like legitimate emails and the ability of Naive Bayes classifiers to properly classify emails.

Page generated in 0.1052 seconds