161 |
Dictionary learning for pattern classification in medical imaging / Apprentissage de dictionnaires pour la reconnaissance de motifs en imagerie médicaleDeshpande, Hrishikesh 08 July 2016 (has links)
La plupart des signaux naturels peuvent être représentés par une combinaison linéaire de quelques atomes dans un dictionnaire. Ces représentations parcimonieuses et les méthodes d'apprentissage de dictionnaires (AD) ont suscité un vif intérêt au cours des dernières années. Bien que les méthodes d'AD classiques soient efficaces dans des applications telles que le débruitage d'images, plusieurs méthodes d'AD discriminatifs ont été proposées pour obtenir des dictionnaires mieux adaptés à la classification. Dans ce travail, nous avons montré que la taille des dictionnaires de chaque classe est un facteur crucial dans les applications de reconnaissance des formes lorsqu'il existe des différences de variabilité entre les classes, à la fois dans le cas des dictionnaires classiques et des dictionnaires discriminatifs. Nous avons validé la proposition d'utiliser différentes tailles de dictionnaires, dans une application de vision par ordinateur, la détection des lèvres dans des images de visages, ainsi que par une application médicale plus complexe, la classification des lésions de scléroses en plaques (SEP) dans des images IRM multimodales. Les dictionnaires spécifiques à chaque classe sont appris pour les lésions et les tissus cérébraux sains. La taille du dictionnaire pour chaque classe est adaptée en fonction de la complexité des données. L'algorithme est validé à l'aide de 52 séquences IRM multimodales de 13 patients atteints de SEP. / Most natural signals can be approximated by a linear combination of a few atoms in a dictionary. Such sparse representations of signals and dictionary learning (DL) methods have received a special attention over the past few years. While standard DL approaches are effective in applications such as image denoising or compression, several discriminative DL methods have been proposed to achieve better image classification. In this thesis, we have shown that the dictionary size for each class is an important factor in the pattern recognition applications where there exist variability difference between classes, in the case of both the standard and discriminative DL methods. We validated the proposition of using different dictionary size based on complexity of the class data in a computer vision application such as lips detection in face images, followed by more complex medical imaging application such as classification of multiple sclerosis (MS) lesions using MR images. The class specific dictionaries are learned for the lesions and individual healthy brain tissues, and the size of the dictionary for each class is adapted according to the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients.
|
162 |
Novel methods for biological network inference : an application to circadian Ca2+ signaling networkJin, Junyang January 2018 (has links)
Biological processes involve complex biochemical interactions among a large number of species like cells, RNA, proteins and metabolites. Learning these interactions is essential to interfering artificially with biological processes in order to, for example, improve crop yield, develop new therapies, and predict new cell or organism behaviors to genetic or environmental perturbations. For a biological process, two pieces of information are of most interest. For a particular species, the first step is to learn which other species are regulating it. This reveals topology and causality. The second step involves learning the precise mechanisms of how this regulation occurs. This step reveals the dynamics of the system. Applying this process to all species leads to the complete dynamical network. Systems biology is making considerable efforts to learn biological networks at low experimental costs. The main goal of this thesis is to develop advanced methods to build models for biological networks, taking the circadian system of Arabidopsis thaliana as a case study. A variety of network inference approaches have been proposed in the literature to study dynamic biological networks. However, many successful methods either require prior knowledge of the system or focus more on topology. This thesis presents novel methods that identify both network topology and dynamics, and do not depend on prior knowledge. Hence, the proposed methods are applicable to general biological networks. These methods are initially developed for linear systems, and, at the cost of higher computational complexity, can also be applied to nonlinear systems. Overall, we propose four methods with increasing computational complexity: one-to-one, combined group and element sparse Bayesian learning (GESBL), the kernel method and reversible jump Markov chain Monte Carlo method (RJMCMC). All methods are tested with challenging dynamical network simulations (including feedback, random networks, different levels of noise and number of samples), and realistic models of circadian system of Arabidopsis thaliana. These simulations show that, while the one-to-one method scales to the whole genome, the kernel method and RJMCMC method are superior for smaller networks. They are robust to tuning variables and able to provide stable performance. The simulations also imply the advantage of GESBL and RJMCMC over the state-of-the-art method. We envision that the estimated models can benefit a wide range of research. For example, they can locate biological compounds responsible for human disease through mathematical analysis and help predict the effectiveness of new treatments.
|
163 |
Towards Developing Computer Vision Algorithms and Architectures for Real-world ApplicationsJanuary 2018 (has links)
abstract: Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for object segmentation and feature extraction for objects and actions recognition in video data, and sparse feature selection algorithms for medical image analysis, as well as automated feature extraction using convolutional neural network for blood cancer grading.
To detect and classify objects in video, the objects have to be separated from the background, and then the discriminant features are extracted from the region of interest before feeding to a classifier. Effective object segmentation and feature extraction are often application specific, and posing major challenges for object detection and classification tasks. In this dissertation, we address effective object flow based ROI generation algorithm for segmenting moving objects in video data, which can be applied in surveillance and self driving vehicle areas. Optical flow can also be used as features in human action recognition algorithm, and we present using optical flow feature in pre-trained convolutional neural network to improve performance of human action recognition algorithms. Both algorithms outperform the state-of-the-arts at their time.
Medical images and videos pose unique challenges for image understanding mainly due to the fact that the tissues and cells are often irregularly shaped, colored, and textured, and hand selecting most discriminant features is often difficult, thus an automated feature selection method is desired. Sparse learning is a technique to extract the most discriminant and representative features from raw visual data. However, sparse learning with \textit{L1} regularization only takes the sparsity in feature dimension into consideration; we improve the algorithm so it selects the type of features as well; less important or noisy feature types are entirely removed from the feature set. We demonstrate this algorithm to analyze the endoscopy images to detect unhealthy abnormalities in esophagus and stomach, such as ulcer and cancer. Besides sparsity constraint, other application specific constraints and prior knowledge may also need to be incorporated in the loss function in sparse learning to obtain the desired results. We demonstrate how to incorporate similar-inhibition constraint, gaze and attention prior in sparse dictionary selection for gastroscopic video summarization that enable intelligent key frame extraction from gastroscopic video data. With recent advancement in multi-layer neural networks, the automatic end-to-end feature learning becomes feasible. Convolutional neural network mimics the mammal visual cortex and can extract most discriminant features automatically from training samples. We present using convolutinal neural network with hierarchical classifier to grade the severity of Follicular Lymphoma, a type of blood cancer, and it reaches 91\% accuracy, on par with analysis by expert pathologists.
Developing real world computer vision applications is more than just developing core vision algorithms to extract and understand information from visual data; it is also subject to many practical requirements and constraints, such as hardware and computing infrastructure, cost, robustness to lighting changes and deformation, ease of use and deployment, etc.The general processing pipeline and system architecture for the computer vision based applications share many similar design principles and architecture. We developed common processing components and a generic framework for computer vision application, and a versatile scale adaptive template matching algorithm for object detection. We demonstrate the design principle and best practices by developing and deploying a complete computer vision application in real life, building a multi-channel water level monitoring system, where the techniques and design methodology can be generalized to other real life applications. The general software engineering principles, such as modularity, abstraction, robust to requirement change, generality, etc., are all demonstrated in this research. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2018
|
164 |
A Survey of Sparse Channel Estimation in Aeronautical TelemetryHogstrom, Christopher James 01 June 2017 (has links)
Aeronautical telemetry suffers from multipath interference, which can be resolved through the use of equalizers at the receiver. The coefficients of data-aided equalizers are computed from a channel estimate. Most channels seen in aeronautical telemetry are sparse, meaning that most of the coefficients of the channel are zero or nearly zero. The maximum likelihood (ML) estimate does not always produce a sparse channel estimate. This thesis surveys a number of sparse estimation algorithms that produce a sparse channel estimate and compares the post-equalizer bit error rates (BER) using these sparse estimates with the post-equalizer BER using the ML estimate. I show that the generalized Orthogonal Matching Pursuit (GOMP) performs the best followed by the Sparse Estimation based on Validation Re-estimated Least Squares (SPARSEVA-RE) and the Least Absolute Shrinkage and Selection Operator (LASSO).
|
165 |
Convex and non-convex optimizations for recovering structured data: algorithms and analysisCho, Myung 15 December 2017 (has links)
Optimization theories and algorithms are used to efficiently find optimal solutions under constraints. In the era of “Big Data”, the amount of data is skyrocketing,and this overwhelms conventional techniques used to solve large scale and distributed optimization problems. By taking advantage of structural information in data representations, this thesis offers convex and non-convex optimization solutions to various large scale optimization problems such as super-resolution, sparse signal processing,hypothesis testing, machine learning, and treatment planning for brachytherapy.
Super-resolution: Super-resolution aims to recover a signal expressed as a sum of a few Dirac delta functions in the time domain from measurements in the frequency domain. The challenge is that the possible locations of the delta functions are in the continuous domain [0,1). To enhance recovery performance, we considered deterministic and probabilistic prior information for the locations of the delta functions and provided novel semidefinite programming formulations under the information. We also proposed block iterative reweighted methods to improve recovery performance without prior information. We further considered phaseless measurements, motivated by applications in optic microscopy and x-ray crystallography. By using the lifting method and introducing the squared atomic norm minimization, we can achieve super-resolution using only low frequency magnitude information. Finally, we proposed non-convex algorithms using structured matrix completion.
Sparse signal processing: L1 minimization is well known for promoting sparse structures in recovered signals. The Null Space Condition (NSC) for L1 minimization is a necessary and sufficient condition on sensing matrices such that a sparse signal can be uniquely recovered via L1 minimization. However, verifying NSC is a non-convex problem and known to be NP-hard. We proposed enumeration-based polynomial-time algorithms to provide performance bounds on NSC, and efficient algorithms to verify NSC precisely by using the branch and bound method.
Hypothesis testing: Recovering statistical structures of random variables is important in some applications such as cognitive radio. Our goal is distinguishing two different types of random variables among n>>1 random variables. Distinguishing them via experiments for each random variable one by one takes lots of time and efforts. Hence, we proposed hypothesis testing using mixed measurements to reduce sample complexity. We also designed efficient algorithms to solve large scale problems.
Machine learning: When feature data are stored in a tree structured network having time delay in communication, quickly finding an optimal solution to the regularized loss minimization is challenging. In this scenario, we studied a communication-efficient stochastic dual coordinate ascent and its convergence analysis.
Treatment planning: In the Rotating-Shield Brachytherapy (RSBT) for cancer treatment, there is a compelling need to quickly obtain optimal treatment plans to enable clinical usage. However, due to the degree of freedom in RSBT, finding optimal treatment planning is difficult. For this, we designed a first order dose optimization method based on the alternating direction method of multipliers, and reduced the execution time around 18 times compared to the previous research.
|
166 |
Statistical inference of distributed delay differential equationsZhou, Ziqian 01 August 2016 (has links)
In this study, we aim to develop new likelihood based method for estimating parameters of ordinary differential equations (ODEs) / delay differential equations (DDEs) models. Those models are important for modeling dynamical processes that are described in terms of their derivatives and are widely used in many fields of modern science, such as physics, chemistry, biology and social sciences. We use our new approach to study a distributed delay differential equation model, the statistical inference of which has been unexplored, to our knowledge. Estimating a distributed DDE model or ODE model with time varying coefficients results in a large number of parameters. We also apply regularization for efficient estimation of such models. We assess the performance of our new approaches using simulation and applied them to analyzing data from epidemiology and ecology.
|
167 |
Cardiac motion estimation in ultrasound images using a sparse representation and dictionary learning / Estimation du mouvement cardiaque en imagerie ultrasonore par représentation parcimonieuse et apprentissage de dictionnaireOuzir, Nora 16 October 2018 (has links)
Les maladies cardiovasculaires sont de nos jours un problème de santé majeur. L'amélioration des méthodes liées au diagnostic de ces maladies représente donc un réel enjeu en cardiologie. Le coeur étant un organe en perpétuel mouvement, l'analyse du mouvement cardiaque est un élément clé pour le diagnostic. Par conséquent, les méthodes dédiées à l'estimation du mouvement cardiaque à partir d'images médicales, plus particulièrement en échocardiographie, font l'objet de nombreux travaux de recherches. Cependant, plusieurs difficultés liées à la complexité du mouvement du coeur ainsi qu'à la qualité des images échographiques restent à surmonter afin d'améliorer la qualité et la précision des estimations. Dans le domaine du traitement d'images, les méthodes basées sur l'apprentissage suscitent de plus en plus d'intérêt. Plus particulièrement, les représentations parcimonieuses et l'apprentissage de dictionnaires ont démontré leur efficacité pour la régularisation de divers problèmes inverses. Cette thèse a ainsi pour but d'explorer l'apport de ces méthodes, qui allient parcimonie et apprentissage, pour l'estimation du mouvement cardiaque. Trois principales contributions sont présentées, chacune traitant différents aspects et problématiques rencontrées dans le cadre de l'estimation du mouvement en échocardiographie. Dans un premier temps, une méthode d'estimation du mouvement cardiaque se basant sur une régularisation parcimonieuse est proposée. Le problème d'estimation du mouvement est formulé dans le cadre d'une minimisation d'énergie, dont le terme d'attache aux données est construit avec l'hypothèse d'un bruit de Rayleigh multiplicatif. Une étape d'apprentissage de dictionnaire permet une régularisation exploitant les propriétés parcimonieuses du mouvement cardiaque, combinée à un terme classique de lissage spatial. Dans un second temps, une méthode robuste de flux optique est présentée. L'objectif de cette approche est de robustifier la méthode d'estimation développée au premier chapitre de manière à la rendre moins sensible aux éléments aberrants. Deux régularisations sont mises en oeuvre, imposant d'une part un lissage spatial et de l'autre la parcimonie des champs de mouvements dans un dictionnaire approprié. Afin d'assurer la robustesse de la méthode vis-à-vis des anomalies, une stratégie de minimisation récursivement pondérée est proposée. Plus précisément, les fonctions employées pour cette pondération sont basées sur la théorie des M-estimateurs. Le dernier travail présenté dans cette thèse, explore une méthode d'estimation du mouvement cardiaque exploitant une régularisation parcimonieuse combinée à un lissage à la fois dans les domaines spatial et temporel. Le problème est formulé dans un cadre général d'estimation de flux optique. La régularisation temporelle proposée impose des trajectoires de mouvement lisses entre images consécutives. De plus, une méthode itérative d'estimation permet d'incorporer les trois termes de régularisations, tout en rendant possible le traitement simultané d'un ensemble d'images. Dans cette thèse, les contributions proposées sont validées en employant des images synthétiques et des simulations réalistes d'images ultrasonores. Ces données avec vérité terrain permettent d'évaluer la précision des approches considérées, et de souligner leur compétitivité par rapport à des méthodes de l'état-del'art. Pour démontrer la faisabilité clinique, des images in vivo de patients sains ou atteints de pathologies sont également considérées pour les deux premières méthodes. Pour la dernière contribution de cette thèse, i.e., exploitant un lissage temporel, une étude préliminaire est menée en utilisant des données de simulation. / Cardiovascular diseases have become a major healthcare issue. Improving the diagnosis and analysis of these diseases have thus become a primary concern in cardiology. The heart is a moving organ that undergoes complex deformations. Therefore, the quantification of cardiac motion from medical images, particularly ultrasound, is a key part of the techniques used for diagnosis in clinical practice. Thus, significant research efforts have been directed toward developing new cardiac motion estimation methods. These methods aim at improving the quality and accuracy of the estimated motions. However, they are still facing many challenges due to the complexity of cardiac motion and the quality of ultrasound images. Recently, learning-based techniques have received a growing interest in the field of image processing. More specifically, sparse representations and dictionary learning strategies have shown their efficiency in regularizing different ill-posed inverse problems. This thesis investigates the benefits that such sparsity and learning-based techniques can bring to cardiac motion estimation. Three main contributions are presented, investigating different aspects and challenges that arise in echocardiography. Firstly, a method for cardiac motion estimation using a sparsity-based regularization is introduced. The motion estimation problem is formulated as an energy minimization, whose data fidelity term is built using the assumption that the images are corrupted by multiplicative Rayleigh noise. In addition to a classical spatial smoothness constraint, the proposed method exploits the sparse properties of the cardiac motion to regularize the solution via an appropriate dictionary learning step. Secondly, a fully robust optical flow method is proposed. The aim of this work is to take into account the limitations of ultrasound imaging and the violations of the regularization constraints. In this work, two regularization terms imposing spatial smoothness and sparsity of the motion field in an appropriate cardiac motion dictionary are also exploited. In order to ensure robustness to outliers, an iteratively re-weighted minimization strategy is proposed using weighting functions based on M-estimators. As a last contribution, we investigate a cardiac motion estimation method using a combination of sparse, spatial and temporal regularizations. The problem is formulated within a general optical flow framework. The proposed temporal regularization enforces smoothness of the motion trajectories between consecutive images. Furthermore, an iterative groupewise motion estimation allows us to incorporate the three regularization terms, while enabling the processing of the image sequence as a whole. Throughout this thesis, the proposed contributions are validated using synthetic and realistic simulated cardiac ultrasound images. These datasets with available groundtruth are used to evaluate the accuracy of the proposed approaches and show their competitiveness with state-of-the-art algorithms. In order to demonstrate clinical feasibility, in vivo sequences of healthy and pathological subjects are considered for the first two methods. A preliminary investigation is conducted for the last contribution, i.e., exploiting temporal smoothness, using simulated data.
|
168 |
Estimation parcimonieuse de biais multitrajets pour les systèmes GNSS / Sparse estimation of multipath biases for GNSSLesouple, Julien 15 March 2019 (has links)
L’évolution des technologies électroniques (miniaturisation, diminution des coûts) a permis aux GNSS (systèmes de navigation par satellites) d’être de plus en plus accessibles et doncutilisés au quotidien, par exemple par le biais d’un smartphone, ou de récepteurs disponibles dans le commerce à des prix raisonnables (récepteurs bas-coûts). Ces récepteurs fournissent à l’utilisateur plusieurs informations, comme par exemple sa position et sa vitesse, ainsi que des mesures des temps de propagation entre le récepteur et les satellites visibles entre autres. Ces récepteurs sont donc devenus très répandus pour les utilisateurs souhaitant évaluer des techniques de positionnement sans développer tout le hardware nécessaire. Les signaux issus des satellites GNSS sont perturbés par de nombreuses sources d’erreurs entre le moment où ils sont traités par le récepteurs pour estimer la mesure correspondante. Il est donc nécessaire decompenser chacune des ces erreurs afin de fournir à l’utilisateur la meilleure position possible. Une des sources d’erreurs recevant beaucoup d’intérêt, est le phénomène de réflexion des différents signaux sur les éventuels obstacles de la scène dans laquelle se trouve l’utilisateur, appelé multitrajets. L’objectif de cette thèse est de proposer des algorithmes permettant de limiter l’effet des multitrajets sur les mesures GNSS. La première idée développée dans cette thèse est de supposer que ces signaux multitrajets donnent naissance à des biais additifs parcimonieux. Cette hypothèse de parcimonie permet d’estimer ces biais à l’aide de méthodes efficaces comme le problème LASSO. Plusieurs variantes ont été développés autour de cette hypothèse visant à contraindre le nombre de satellites ne souffrant pas de multitrajet comme non nul. La deuxième idée explorée dans cette thèse est une technique d’estimation des erreurs de mesure GNSS à partir d’une solution de référence, qui suppose que les erreurs dues aux multitrajets peuvent se modéliser à l’aide de mélanges de Gaussiennes ou de modèles de Markov cachés. Deux méthodes de positionnement adaptées à ces modèles sont étudiées pour la navigation GNSS. / The evolution of electronic technologies (miniaturization, price decreasing) allowed Global Navigation Satellite Systems (GNSS) to be used in our everyday life, through a smartphone for instance, or through receivers available in the market at reasonable prices (low cost receivers). Those receivers provide the user with many information, such as his position or velocity, but also measurements such as propagation delays of the signals emitted by the satellites and processed by the receiver. These receivers are thus widespread for users who want to challenge positioning techniques without developing the whole product. GNSS signals are affected by many error sources between the moment they are emitted and the moment they are processed by the receiver to compute the measurements. It is then necessary to mitigate each of these error sources to provide the user the most accurate solution. One of the most intense research topic in navigation is the phenomenon of reflexions on the eventual obstacles in the scene the receiver is located in, called multipath. The aim of this thesis is to propose algorithms allowing the effects of multipath on GNSS measurements to be reduced. The first idea presented in this thesis is to assume these multipath lead to sparse additive biases. This hypothesis allows us to estimate this biases thanks to efficient methods such as the LASSO problem. The second idea explored in this thesis is an estimation method of GNSS measurement errors corresponding to the proposed navigation algorithm thanks to a reference trajectory, which assumes these errors can be modelled by Gaussian mixtures or Hidden Markov Models. Two filtering methods corresponding to these two models are studied for GNSS navigation.
|
169 |
Design of Fast Multidimensional Filters by Genetic AlgorithmsLanger, Max January 2004 (has links)
<p>The need for fast multidimensional signal processing arises in many areas. One of the more demanding applications is real time visualization of medical data acquired with e.g. magnetic resonance imaging where large amounts of data can be generated. This data has to be reduced to relevant clinical information, either by image reconstruction and enhancement or automatic feature extraction. Design of fast-acting multidimensional filters has been subject to research during the last three decades. Usually methods for fast filtering are based on applying a sequence of filters of lower dimensionality acquired by e.g. weighted low-rank approximation. Filter networks is a method to design fast multidimensional filters by decomposing multiple filters into simpler filter components in which coefficients are allowed to be sparsely scattered. Up until now, coefficient placement has been done by hand, a procedure which is time-consuming and difficult. The aim of this thesis is to investigate whether genetic algorithms can be used to place coefficients in filter networks. A method is developed and tested on 2-D filters and the resulting filters have lower distortion values while still maintaining the same or lower number of coefficients than filters designed with previously known methods.</p>
|
170 |
Denoising of Infrared Images Using Independent Component AnalysisBjörling, Robin January 2005 (has links)
<p>Denna uppsats syftar till att undersöka användbarheten av metoden Independent Component Analysis (ICA) för brusreducering av bilder tagna av infraröda kameror. Speciellt fokus ligger på att reducera additivt brus. Bruset delas upp i två delar, det Gaussiska bruset samt det sensorspecifika mönsterbruset. För att reducera det Gaussiska bruset används en populär metod kallad sparse code shrinkage som bygger på ICA. En ny metod, även den byggandes på ICA, utvecklas för att reducera mönsterbrus. För varje sensor utförs, i den nya metoden, en analys av bilddata för att manuellt identifiera typiska mönsterbruskomponenter. Dessa komponenter används därefter för att reducera mönsterbruset i bilder tagna av den aktuella sensorn. Det visas att metoderna ger goda resultat på infraröda bilder. Algoritmerna testas både på syntetiska såväl som på verkliga bilder och resultat presenteras och jämförs med andra algoritmer.</p> / <p>The purpose of this thesis is to evaluate the applicability of the method Independent Component Analysis (ICA) for noise reduction of infrared images. The focus lies on reducing the additive uncorrelated noise and the sensor specific additive Fixed Pattern Noise (FPN). The well known method sparse code shrinkage, in combination with ICA, is applied to reduce the uncorrelated noise degrading infrared images. The result is compared to an adaptive Wiener filter. A novel method, also based on ICA, for reducing FPN is developed. An independent component analysis is made on images from an infrared sensor and typical fixed pattern noise components are manually identified. The identified components are used to fast and effectively reduce the FPN in images taken by the specific sensor. It is shown that both the FPN reduction algorithm and the sparse code shrinkage method work well for infrared images. The algorithms are tested on synthetic as well as on real images and the performance is measured.</p>
|
Page generated in 0.035 seconds