• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dimension Reduction and LASSO using Pointwise and Group Norms

Jutras, Melanie A 11 December 2018 (has links)
Principal Components Analysis (PCA) is a statistical procedure commonly used for the purpose of analyzing high dimensional data. It is often used for dimensionality reduction, which is accomplished by determining orthogonal components that contribute most to the underlying variance of the data. While PCA is widely used for identifying patterns and capturing variability of data in lower dimensions, it has some known limitations. In particular, PCA represents its results as linear combinations of data attributes. PCA is therefore, often seen as difficult to interpret and because of the underlying optimization problem that is being solved it is not robust to outliers. In this thesis, we examine extensions to PCA that address these limitations. Specific techniques researched in this thesis include variations of Robust and Sparse PCA as well as novel combinations of these two methods which result in a structured low-rank approximation that is robust to outliers. Our work is inspired by the well known machine learning methods of Least Absolute Shrinkage and Selection Operator (LASSO) as well as pointwise and group matrix norms. Practical applications including robust and non-linear methods for anomaly detection in Domain Name System network data as well as interpretable feature selection with respect to a website classification problem are discussed along with implementation details and techniques for analysis of regularization parameters.
2

Incremental Sparse-PCA Feature Extraction For Data Streams

Nziga, Jean-Pierre 01 January 2015 (has links)
Intruders attempt to penetrate commercial systems daily and cause considerable financial losses for individuals and organizations. Intrusion detection systems monitor network events to detect computer security threats. An extensive amount of network data is devoted to detecting malicious activities. Storing, processing, and analyzing the massive volume of data is costly and indicate the need to find efficient methods to perform network data reduction that does not require the data to be first captured and stored. A better approach allows the extraction of useful variables from data streams in real time and in a single pass. The removal of irrelevant attributes reduces the data to be fed to the intrusion detection system (IDS) and shortens the analysis time while improving the classification accuracy. This dissertation introduces an online, real time, data processing method for knowledge extraction. This incremental feature extraction is based on two approaches. First, Chunk Incremental Principal Component Analysis (CIPCA) detects intrusion in data streams. Then, two novel incremental feature extraction methods, Incremental Structured Sparse PCA (ISSPCA) and Incremental Generalized Power Method Sparse PCA (IGSPCA), find malicious elements. Metrics helped compare the performance of all methods. The IGSPCA was found to perform as well as or better than CIPCA overall in term of dimensionality reduction, classification accuracy, and learning time. ISSPCA yielded better results for higher chunk values and greater accumulation ratio thresholds. CIPCA and IGSPCA reduced the IDS dataset to 10 principal components as opposed to 14 eigenvectors for ISSPCA. ISSPCA is more expensive in terms of learning time in comparison to the other techniques. This dissertation presents new methods that perform feature extraction from continuous data streams to find the small number of features necessary to express the most data variance. Data subsets derived from a few important variables render their interpretation easier. Another goal of this dissertation was to propose incremental sparse PCA algorithms capable to process data with concept drift and concept shift. Experiments using WaveForm and WaveFormNoise datasets confirmed this ability. Similar to CIPCA, the ISSPCA and IGSPCA updated eigen-axes as a function of the accumulation ratio value, forming informative eigenspace with few eigenvectors.
3

RANDOMIZED NUMERICAL LINEAR ALGEBRA APPROACHES FOR APPROXIMATING MATRIX FUNCTIONS

Evgenia-Maria Kontopoulou (9179300) 28 July 2020 (has links)
<p>This work explores how randomization can be exploited to deliver sophisticated</p><p>algorithms with provable bounds for: (i) The approximation of matrix functions, such</p><p>as the log-determinant and the Von-Neumann entropy; and (ii) The low-rank approximation</p><p>of matrices. Our algorithms are inspired by recent advances in Randomized</p><p>Numerical Linear Algebra (RandNLA), an interdisciplinary research area that exploits</p><p>randomization as a computational resource to develop improved algorithms for</p><p>large-scale linear algebra problems. The main goal of this work is to encourage the</p><p>practical use of RandNLA approaches to solve Big Data bottlenecks at industrial</p><p>level. Our extensive evaluation tests are complemented by a thorough theoretical</p><p>analysis that proves the accuracy of the proposed algorithms and highlights their</p><p>scalability as the volume of data increases. Finally, the low computational time and</p><p>memory consumption, combined with simple implementation schemes that can easily</p><p>be extended in parallel and distributed environments, render our algorithms suitable</p><p>for use in the development of highly efficient real-world software.</p>
4

Sparse Principal Component Analysis for High-Dimensional Data: A Comparative Study

Bonner, Ashley J. 10 1900 (has links)
<p><strong>Background:</strong> Through unprecedented advances in technology, high-dimensional datasets have exploded into many fields of observational research. For example, it is now common to expect thousands or millions of genetic variables (p) with only a limited number of study participants (n). Determining the important features proves statistically difficult, as multivariate analysis techniques become flooded and mathematically insufficient when n < p. Principal Component Analysis (PCA) is a commonly used multivariate method for dimension reduction and data visualization but suffers from these issues. A collection of Sparse PCA methods have been proposed to counter these flaws but have not been tested in comparative detail. <strong>Methods:</strong> Performances of three Sparse PCA methods were evaluated through simulations. Data was generated for 56 different data-structures, ranging p, the number of underlying groups and the variance structure within them. Estimation and interpretability of the principal components (PCs) were rigorously tested. Sparse PCA methods were also applied to a real gene expression dataset. <strong>Results:</strong> All Sparse PCA methods showed improvements upon classical PCA. Some methods were best at obtaining an accurate leading PC only, whereas others were better for subsequent PCs. There exist different optimal choices of Sparse PCA methods when ranging within-group correlation and across-group variances; thankfully, one method repeatedly worked well under the most difficult scenarios. When applying methods to real data, concise groups of gene expressions were detected with the most sparse methods. <strong>Conclusions:</strong> Sparse PCA methods provide a new insightful way to detect important features amidst complex high-dimension data.</p> / Master of Science (MSc)
5

Développement de méthodes statistiques nécessaires à l'analyse de données génomiques : application à l'influence du polymorphisme génétique sur les caractéristiques cutanées individuelles et l'expression du vieillissement cutané / Development of statistical methods for genetic data analysis : identification of genetic polymorphisms potentially involved in skin aging

Bernard, Anne 20 December 2013 (has links)
Les nouvelles technologies développées ces dernières années dans le domaine de la génétique ont permis de générer des bases de données de très grande dimension, en particulier de Single Nucleotide Polymorphisms (SNPs), ces bases étant souvent caractérisées par un nombre de variables largement supérieur au nombre d'individus. L'objectif de ce travail a été de développer des méthodes statistiques adaptées à ces jeux de données de grande dimension et permettant de sélectionner les variables les plus pertinentes au regard du problème biologique considéré. Dans la première partie de ce travail, un état de l'art présente différentes méthodes de sélection de variables non supervisées et supervisées pour 2 blocs de variables et plus. Dans la deuxième partie, deux nouvelles méthodes de sélection de variables non supervisées de type "sparse" sont proposées : la Group Sparse Principal Component Analysis (GSPCA) et l'Analyse des Correspondances Multiples sparse (ACM sparse). Vues comme des problèmes de régression avec une pénalisation group LASSO elles conduisent à la sélection de blocs de variables quantitatives et qualitatives, respectivement. La troisième partie est consacrée aux interactions entre SNPs et dans ce cadre, une méthode spécifique de détection d'interactions, la régression logique, est présentée. Enfin, la quatrième partie présente une application de ces méthodes sur un jeu de données réelles de SNPs afin d'étudier l'influence possible du polymorphisme génétique sur l'expression du vieillissement cutané au niveau du visage chez des femmes adultes. Les méthodes développées ont donné des résultats prometteurs répondant aux attentes des biologistes, et qui offrent de nouvelles perspectives de recherches intéressantes / New technologies developed recently in the field of genetic have generated high-dimensional databases, especially SNPs databases. These databases are often characterized by a number of variables much larger than the number of individuals. The goal of this dissertation was to develop appropriate statistical methods to analyse high-dimensional data, and to select the most biologically relevant variables. In the first part, I present the state of the art that describes unsupervised and supervised variables selection methods for two or more blocks of variables. In the second part, I present two new unsupervised "sparse" methods: Group Sparse Principal Component Analysis (GSPCA) and Sparse Multiple Correspondence Analysis (Sparse MCA). Considered as regression problems with a group LASSO penalization, these methods lead to select blocks of quantitative and qualitative variables, respectively. The third part is devoted to interactions between SNPs. A method employed to identify these interactions is presented: the logic regression. Finally, the last part presents an application of these methods on a real SNPs dataset to study the possible influence of genetic polymorphism on facial skin aging in adult women. The methods developed gave relevant results that confirmed the biologist's expectations and that offered new research perspectives.

Page generated in 0.0127 seconds