• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Some general properties of entropy for homogeneous systems

Kay, Amanda R. January 2000 (has links)
No description available.
2

Emergence prostorových geometrií z kvantového entanglementu / Emergence of space geometries from quantum entanglement

Lukeš, Petr January 2019 (has links)
MASTER THESIS Petr Lukeš Emergence of space geometries from quantum entanglement Institute of Theoretical Physics Supervisor of the master thesis: Mgr. Martin Scholtz, Ph.D. Study programme: Physics Study branch: Theoretical physics Prague 2019 Abstract: Connecting the field of Quantum Physics and General Relativity is one of the main interests of contemporary Theoretical Physics. This work attempts to find solution to simplified version of this problem. Firstly entropy is shown to be a good meeting point between the two different theories. Then some of entropy's less intuitive properties are shown, namely its dependence on area, not volume. This relation is studied from both Relativistic and Quantum viewpoint. After- wards there is a short description of a quantum model interpretable as geometry based on the information between its subsystems. Lastly, results of computations within this model are presented.
3

Ordering of Entangled States for Different Entanglement Measures / Ordning av Sammanflätningsgrad hos Kvantmekaniska Tillstånd för Olika Mätmodeller

Sköld, Jennie January 2014 (has links)
Quantum entanglement is a phenomenon which has shown great potential use in modern technical implementations, but there is still much development needed in the field. One major problem is how to measure the amount of entanglement present in a given entangled state. There are numerous different entanglement measures suggested, all satisfying some conditions being of either operational, or more abstract, mathematical nature. However, in contradiction to what one might expect, the measures show discrepancies in the ordering of entangled states. Concretely this means that with respect to one measure, a state can be more entangled than another state, but the ordering may be opposite for the same states using another measure. In this thesis we take a closer look at some of the most commonly occurring entanglement measures, and find examples of states showing inequivalent entanglement ordering for the different measures. / Kvantmekanisk sammanflätning är ett fenomen som visat stor potential för framtida tekniska tillämpningar, men för att kunna använda oss av detta krävs att vi hittar lämpliga modeller att mäta omfattningen av sammanflätningen hos ett givet tillstånd. Detta har visat sig vara en svår uppgift, då de modeller som finns idag är otillräckliga när det gäller att konsekvent avgöra till vilken grad olika tillstånd är sammanflätade. Exempelvis kan en modell visa att ett tillstånd är mer sammanflätat än ett annat, medan en annan modell kan visa på motsatsen - att det första tillståndet är mindre sammanflätat än det andra. En möljig orsak kan ligga i de olika modellernas deifnition, då vissa utgår från operativa definitioner, medan andra grundas på matematiska, abstrakta villkor. I denna uppsats tittar vi lite närmre på några av de mätmodeller som finns, och hittar exempel på tillstånd som uppvisar olika ordning av sammanflätningsgrad beroende på vilken modell som används.
4

RANDOMIZED NUMERICAL LINEAR ALGEBRA APPROACHES FOR APPROXIMATING MATRIX FUNCTIONS

Evgenia-Maria Kontopoulou (9179300) 28 July 2020 (has links)
<p>This work explores how randomization can be exploited to deliver sophisticated</p><p>algorithms with provable bounds for: (i) The approximation of matrix functions, such</p><p>as the log-determinant and the Von-Neumann entropy; and (ii) The low-rank approximation</p><p>of matrices. Our algorithms are inspired by recent advances in Randomized</p><p>Numerical Linear Algebra (RandNLA), an interdisciplinary research area that exploits</p><p>randomization as a computational resource to develop improved algorithms for</p><p>large-scale linear algebra problems. The main goal of this work is to encourage the</p><p>practical use of RandNLA approaches to solve Big Data bottlenecks at industrial</p><p>level. Our extensive evaluation tests are complemented by a thorough theoretical</p><p>analysis that proves the accuracy of the proposed algorithms and highlights their</p><p>scalability as the volume of data increases. Finally, the low computational time and</p><p>memory consumption, combined with simple implementation schemes that can easily</p><p>be extended in parallel and distributed environments, render our algorithms suitable</p><p>for use in the development of highly efficient real-world software.</p>
5

Dynamics for the special class of quantum master equations

Pietro, Locatelli January 2022 (has links)
The paper is an analysis of a special class of the master equations such that the Dissipation superoperator is L(ρ) = [M, [M, ρ]], where M is an hermitian andunitary operator and ρ a density matrix. It mainly investigates the dynamics ofρ and its properties such as boundness of the operators of the master equation,the eigenvalues of these operators, the purity of the states, the steady states. In the study of the temporal evolution of ρ it has been done an analysis of Decoherence free subspaces(DFS). A special attention is given to von Neumannentropy. For what it regards this last topic there are also specific referencesto the camel-like behaviour, a phenomenon regarding the entropy that happenswhen certain conditions of the dissipation superaoperator are not satisfied.There are Python simulations of the expectation values of some operators, andof the von Neumann entropy, and Linear Entropy.

Page generated in 0.0833 seconds