21 |
Real-time tissue viability assessment using near-infrared lightAngelo, Joseph Paul 09 July 2017 (has links)
Despite significant advances in medical imaging technologies, there currently exist no tools to effectively assist healthcare professionals during surgical procedures. In turn, procedures remain subjective and dependent on experience, resulting in avoidable failure and significant quality of care disparities across hospitals.
Optical techniques are gaining popularity in clinical research because they are low cost, non-invasive, portable, and can retrieve both fluorescence and endogenous contrast information, providing physiological information relative to perfusion, oxygenation, metabolism, hydration, and sub-cellular content. Near-infrared (NIR) light is especially well suited for biological tissue and does not cause tissue damage from ionizing radiation or heat.
My dissertation has been focused on developing rapid imaging techniques for mapping endogenous tissue constituents to aid surgical guidance. These techniques allow, for the first time, video-rate quantitative acquisition over a large field of view (> 100 cm2) in widefield and endoscopic implementations. The optical system analysis has been focused on the spatial-frequency domain for its ease of quantitative measurements over large fields of view and for its recent development in real-time acquisition, single snapshot of optical properties (SSOP) imaging.
Using these methods, this dissertation provides novel improvements and implementations to SSOP, including both widefield and endoscopic instrumentations capable of video-rate acquisition of optical properties and sample surface profile maps. In turn, these measures generate profile-corrected maps of hemoglobin concentration that are highly beneficial for perfusion and overall tissue viability. Also utilizing optical property maps, a novel technique for quantitative fluorescence imaging was also demonstrated, showing large improvement over standard and ratiometric methods. To enable real-time feedback, rapid processing algorithms were designed using lookup tables that provide a 100x improvement in processing speed. Finally, these techniques were demonstrated in vivo to investigate their ability for early detection of tissue failure due to ischemia. Both pre-clinical studies show endogenous contrast imaging can provide early measures of future tissue viability.
The goal of this work has been to provide the foundation for real-time imaging systems that provide tissue constituent quantification for tissue viability assessments. / 2018-01-09T00:00:00Z
|
22 |
Psychophysical explorations of the illusion underpinning frequency doubling perimetry in glaucomaVallam, Kunjam Unknown Date (has links) (PDF)
The spatial frequency doubling illusion (FDI) occurs when the contrast of a low spatial frequency sinusoidal grating is modulated at high temporal frequencies – its apparent spatial frequency increases. Earlier suggestions were that the FDI is generated by a specific class of retinal ganglion cells, which are preferentially lost in the early stages of glaucoma. Based on this linking theory, frequency doubling perimetry (FDP) was developed and several clinical reports confirmed its high efficiency in diagnosing early glaucomatous vision loss. However, this linking theory is not universally accepted and newer suggestions posit that the illusion arises because of temporal frequency related difficulties in temporal phase encoding ability. This thesis psychophysically examines the spatiotemporal characteristics of both the FDI and temporal phase encoding ability with achromatic and equi-luminant (both red-green (RG) and blue-yellow (BY)) gratings at a range of spatiotemporal parameters including those eliciting the FDI. (For complete abstract open document)
|
23 |
Analysis of Bloch formalism in undamped and damped periodic structuresFarzbod, Farhad 15 November 2010 (has links)
Bloch analysis was originally developed by Felix Bloch to solve Schrödinger's equation for the electron wave function in a periodic potential field, such as that found in a pristine crystalline solid. His method has since been adapted to study elastic wave propagation in periodic structures. The absence of a rigorous mathematical analysis of the approach, as applied to periodic structures, has resulted in mistreatment of internal forces and misapplication to nonlinear media. In this thesis, we detail a mathematical basis for Bloch analysis and thereby shed important light on the proper application of the technique. We show conclusively that translational invariance is not a proper justification for invoking the existence of a "propagation constant," and that in nonlinear media this results in a flawed analysis. Next, we propose a general framework for applying Bloch analysis in damped systems and investigate the effect of damping on dispersion curves. In the context of Schrödinger's equation, damping is absent and energy is conserved. In the damped setting, application of Bloch analysis is not straight-forward and requires additional considerations in order to obtain valid results. Results are presented in which the approach is applied to example structures. These results reveal that damping may introduce wavenumber band gaps and bending of dispersion curves such that two or more temporal frequencies exist for each dispersion curve and wavenumber. We close the thesis by deriving conditions which predict the number of wavevectors at each frequency in a dispersion relation. This has important implications for the number of nearest neighbor interactions that must be included in a model in order to obtain dispersion predictions which match experiment.
|
24 |
Optical and structural property mapping of soft tissues using spatial frequency domain imagingYang, Bin, Ph. D. 17 September 2015 (has links)
Tissue optical properties, absorption, scattering and fluorescence, reveal important information about health, and holds the potential for non-invasive diagnosis and therefore earlier treatment for many diseases. On the other hand, tissue structure determines its function. Studying tissue structural properties helps us better understand structure-function relationship. Optical imaging is an ideal tool to study these tissue properties. However, conventional optical imaging techniques have limitations, such as not being able to quantitatively evaluate tissue absorption and scattering properties and only providing volumetrically averaged quantities with no depth control capability. To better study tissue properties, we integrated spatial frequency domain imaging (SFDI) with conventional reflectance imaging modalities. SFDI is a non-invasive, non-contact wide-field imaging technique which utilizes structured illumination to probe tissues. SFDI imaging is able to accurately quantify tissue optical properties. By adjusting spatial frequency, the imaging depth can be tuned which allows for depth controlled imaging. Especially at high spatial frequency, SFDI reflectance image is more sensitive to tissue scattering property than absorption property. The imaging capability of SFDI allows for studying tissue properties from a whole new perspective. In our study, we developed both benchtop and handheld SFDI imaging systems to accommodate different applications. By evaluating tissue optical properties, we corrected attenuation in fluorescence imaging using an analytical model; and we quantified optical and physical properties of skin diseases. By imaging at high spatial frequency, we demonstrated that absorption in fluorescence imaging can also be reduced because of a reduced imaging depth. This correction can be performed in real-time at 19 frames/second. Furthermore, fibrous structures orientation from the superficial layer can be accurately quantified in a multi-layered sample by limiting imaging depth. Finally, we color rendered SFDI reflectance image at high spatial frequency to reveal structural changes in skin lesions.
|
25 |
A psychophysical investigation of human visual perceptual memory : a study of the retention of colour, spatial frequency and motion visual information by human visual short term memory mechanismsNemes, Vanda Agnes January 2011 (has links)
The aim of this thesis was to investigate how visual information is organised in perceptual short term memory, with special interest in colour, spatial frequency and velocity. Previous studies of VSTM have indicated the existence of specific memory mechanisms for visual attributes such as orientation, spatial frequency, velocity, contrast and colour. The retention of information in visual short term memory for these basic visual attributes can be disrupted by the presentation of masking stimuli during inter-stimulus intervals (ISIs), which are outside the range of traditional sensory masking. We exploited this memory masking effect in order to examine the organisation of visual information in VSTM. Four groups of experiments were conducted in which participants carried out a delayed discrimination paradigm that employed a two-alternative forced choice (2-AFC) procedure in conjunction with a method of constant stimuli. The fidelity of VSTM was measured by performance markers such as discrimination thresholds and point of subjective equalities. We have found selective memory masking effects, which serve as further evidence in favour of the modular organisation in VSTM, namely, that human visual perceptual memory is based upon multiple, tuned channels in case of colour, spatial frequency and speed, similar to those found in the earliest stages of visual processing for spatial frequency. Moreover, each of these storage mechanisms are tuned to a relatively narrow range of stimulus parameters that are closely linked to visual discrimination mechanisms. These findings add further support to the view that low-level sensory processing mechanisms form the basis for the retention of colour, spatial frequency and velocity information in perceptual memory. We also found evidence for the broad range of transfer of memory masking effects across spatial location, which indicates more long range, long duration interactions between channels that are likely to rely upon contributions from neural processes located in higher visual areas. In conclusion, the experiments presented in this thesis provide significant insight into the organization of visual information in perceptual short term memory.
|
26 |
A psychophysical investigation of audio-visual timing in the millisecond rangeHotchkiss, John January 2012 (has links)
The experiments described in this thesis use psychophysical techniques and human observers to investigate temporal processing in the millisecond range. The thesis contains five main sections. Introductory chapters provide a brief overview of the visual and auditory systems, before detailing our current understanding of duration processing. During the course of this review, several important questions are highlighted. The experiments detailed in Chapters 8-11 seek to address these questions using the psychophysical techniques outlined in Chapter 7. The results of these experiments increase our understanding of duration perception in several areas. Firstly, Experiments 1 and 2 (Chapter 8) highlight the role of low level stimulus features: even when equated for visibility stimuli of differing spatial frequency have different perceived durations. Secondly, a psychophysical hypothesis arising from the 'duration channels' or 'labelled lines' model of duration perception is given strong support by the adaptation experiments detailed in Chapter 9 and 10. Specifically, adaptation to durations of a fixed temporal extent induces repulsive duration aftereffects that are sensory specific and bandwidth limited around the adapted duration. Finally Chapter 11 describes the results of experiments designed to probe the processing hierarchy within duration perception by measuring the interdependency of illusions generated via duration adaptation and via multisensory cue combination. The results of these experiments demonstrate that duration adaptation is a relatively early component of temporal processing and is likely to be sub served by duration selective neurons situated in early sections of the visual and auditory systems.
|
27 |
A Study of Image Artifacts Caused By Structured Mid-spatial Frequency Fabrication Errors on Optical SurfacesTamkin, John M. January 2010 (has links)
Aspheric and freeform surfaces are becoming more common as optical designs become more sophisticated and new generations of fabrication tools reduce cost. Unlike spherical surfaces, these surfaces are fabricated with processes that leave a signature or "structure" that is primarily in the mid-spatial frequency region. Tolerancing aspheric and freeform surfaces requires attention to both surface form and structured mid-spatial frequency fabrication errors. These structured surface errors are shown to create image artifacts such as ghosts, and ripples in the MTF profile. Spatial frequencies beyond "form" errors are often ignored or are modeled with statistical descriptors, which do not account for structured errors.This work explores and develops the theory to describe these errors without statistical assumptions. The analytic source of these artifacts in the image Point Spread Function and the Modulation Transfer Function are compared with computational models. The magnitudes of the image artifacts arising from structured surface errors are shown to be non-linear with surface height. It is also shown that multiple structured surface frequencies mix to create sum and difference diffraction orders that are not present in statistical models.An algorithm is developed that enables an optical designer to determine the important spatial frequencies and magnitudes of allowable errors given an MTF performance budget.
|
28 |
Recent results in curvelet-based primary-multiple separation: application to real dataWang, Deli, Saab, Rayan, Yilmaz, Ozgur, Herrmann, Felix J. January 2007 (has links)
In this abstract, we present a nonlinear curvelet-based sparsitypromoting
formulation for the primary-multiple separation
problem. We show that these coherent signal components can
be separated robustly by explicitly exploting the locality of
curvelets in phase space (space-spatial frequency plane) and
their ability to compress data volumes that contain wavefronts.
This work is an extension of earlier results and the presented
algorithms are shown to be stable under noise and moderately
erroneous multiple predictions.
|
29 |
Spatial frequencies underlying upright and inverted face identificationWillenbockel, Verena 03 July 2008 (has links)
The face inversion effect (FIE; Yin, 1969) raises the question of whether upright face identification is mediated by a special mechanism that is disrupted by inversion. The present study investigates the effect of face inversion on the perceptual encoding of spatial frequency (SF) information using a novel variant of the Bubbles technique (Gosselin & Schyns, 2001). In Experiment 1, the SF Bubbles technique was validated using a simple plaid detection task. In Experiment 2, SF tuning of upright and inverted face identification was measured. While the data showed a clear FIE (28% higher accuracy and 455 ms shorter reaction times for upright faces), SF tunings were remarkably similar in both conditions (r = .96; a single SF band of ~2 octaves peaking at ~9 cycles per face width). Experiments 3 and 4 demonstrated that SF Bubbles is sensitive to bottom-up and top-down induced changes in SF tuning, respectively. Overall, the results show that the same SFs are utilized in upright and inverted face identification, albeit not with equal efficiency.
|
30 |
Psychophysical explorations of the illusion underpinning frequency doubling perimetry in glaucomaVallam, Kunjam Unknown Date (has links) (PDF)
The spatial frequency doubling illusion (FDI) occurs when the contrast of a low spatial frequency sinusoidal grating is modulated at high temporal frequencies – its apparent spatial frequency increases. Earlier suggestions were that the FDI is generated by a specific class of retinal ganglion cells, which are preferentially lost in the early stages of glaucoma. Based on this linking theory, frequency doubling perimetry (FDP) was developed and several clinical reports confirmed its high efficiency in diagnosing early glaucomatous vision loss. However, this linking theory is not universally accepted and newer suggestions posit that the illusion arises because of temporal frequency related difficulties in temporal phase encoding ability. This thesis psychophysically examines the spatiotemporal characteristics of both the FDI and temporal phase encoding ability with achromatic and equi-luminant (both red-green (RG) and blue-yellow (BY)) gratings at a range of spatiotemporal parameters including those eliciting the FDI. (For complete abstract open document)
|
Page generated in 0.0544 seconds