Spelling suggestions: "subject:"spatiotemporal trajectory visualization"" "subject:"spatiotemporal trajectory visualization""
1 |
Interactive Visual Analytics for Agent-Based simulation : Street-Crossing Behavior at Signalized Pedestrian CrossingZheng, Jiaqi January 2019 (has links)
To design a pedestrian crossing area reasonably can be a demanding task for traffic planners. There are several challenges, including determining the appropriate dimensions, and ensuring that pedestrians are exposed to the least risks. Pedestrian safety is especially obscure to analyze, given that many people in Stockholm cross the street illegally by running against the red light. To cope with these challenges, computational approaches of trajectory data visual analytics can be used to support the analytical reasoning process. However, it remains an unexplored field regarding how to visualize and communicate the street-crossing spatio-temporal data effectively. Moreover, the rendering also needs to deal with a growing data size for a more massive number of people. This thesis proposes a web-based interactive visual analytics tool for pedestrians' street-crossing behavior under various flow rates. The visualization methodology is also presented, which is then evaluated to have achieved satisfying communication and rendering effectiveness for maximal 180 agents over 100 seconds. In terms of the visualization scenario, pedestrians either wait for the red light or cross the street illegally; all people can choose to stop by a buffer island before they finish crossing. The visualization enables the analysis under multiple flow rates for 1) pedestrian movement, 2) space utilization, 3) crossing frequency in time-series, and 4) illegal frequency. Additionally, to acquire the initial trajectory data, Optimal Reciprocal Collision Avoidance (ORCA) algorithm is engaged in the crowd simulation. Then different visualization techniques are utilized to comply with user demands, including map animation, data aggregation, and time-series graph. / Att konstruera ett gångvägsområde kan rimligen vara en krävande uppgift för trafikplanerare. Det finns flera utmaningar, bland annat att bestämma lämpliga dimensioner och se till att fotgängare utsätts för minst risker. Fotgängarnas säkerhet är särskilt obskyrlig att analysera, eftersom många människor i Stockholm korsar gatan olagligt genom att springa mot det röda ljuset. För att klara av dessa utmaningar kan beräkningsmetoder för bana data visuell analys användas för att stödja den analytiska resonemangsprocessen. Det är emellertid ett oexplorerat fält om hur man visualiserar och kommunicerar gataövergången spatio-temporal data effektivt. Dessutom måste rendering också hantera en växande datastorlek för ett mer massivt antal människor. Denna avhandling föreslår ett webbaserat interaktivt visuellt analysverktyg för fotgängares gatöverföring under olika flödeshastigheter. Visualiseringsmetoden presenteras också, som sedan utvärderas för att ha uppnått tillfredsställande kommunikation och effektivitet för maximal 180 agenter över 100 sekunder. Vad beträffar visualiseringsscenariot, väntar fotgängare antingen på det röda ljuset eller tvärs över gatan; alla människor kan välja att stanna vid en buffertö innan de slutar korsa. Visualiseringen möjliggör analysen under flera flödeshastigheter för 1) fotgängarrörelse, 2) rymdutnyttjande, 3) korsfrekvens i tidsserier och 4) olaglig frekvens. För att förvärva den ursprungliga bana-data är Optimal Reciprocal Collision Avoidance (ORCA) algoritmen förknippad med folkmassimuleringen. Därefter utnyttjas olika visualiseringstekniker för att uppfylla användarnas krav, inklusive kartanimering, dataaggregering och tidsserier.
|
Page generated in 0.1541 seconds