• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variation Among Fish Species in the Stoichiometry of Nutrient Excretion

Torres, Lisette E. 05 August 2005 (has links)
No description available.
2

Biotic resistance in freshwater fish communities

Henriksson, Anna January 2015 (has links)
Invasions of non-native species cause problems in ecosystems worldwide, and despite the extensive effort that has been put into research about invasions, we still lack a good understanding for why some, but not other, communities resist these invasions. In this doctoral thesis I test hypotheses on biotic resistance using a large dataset of more than 1000 both failed and successful introductions of freshwater fish into Swedish lakes. We have found that the classic species richness hypothesis is a poor descriptor of introduction success because it fails to acknowledge that resident species contribute to the resistance in different ways. We developed a new measure of biotic resistance, the weighted species richness, which takes into account that the resident species contributes to the resistance with different strength and sign. Further, we correlated performance traits of species in their role as an invader and as a resident species to predict how the biotic resistance of these communities would develop over time. We found a positive correlation between performance traits: Some species have high introduction success, they make a large contribution to the resistance, and they cause extinctions when introduced but do not go extinct themselves when other species establishes, whereas other species are weak performers in these respects. Thus, the biotic resistance of these communities should grow stronger as non-native species accumulates. These results give us clues about what type of communities that should be most sensitive to further invasions, i.e., communities harboring species weak performers.  My results show that the biotic resistance of communities is an important factor in determining invasibility of a community. They also show that methods for quantifying resistance must take into account how interactions are structured in nature. What determine the biotic resistance of a community is the type of interactions that the resident species have with the invader and not the species richness of the community.
3

Species identity and the functioning of ecosystems: the role of detritivore traits and trophic interactions in connecting of multiple ecosystem responses

Hines, Jes, Eisenhauer, Nico 05 April 2023 (has links)
Ecosystems world-wide experience changes in species composition in response to natural and anthropogenic changes in environmental conditions. Research to date has greatly improved our understanding of how species affect focal ecosystem functions. However, because measurements of multiple ecosystem functions have not been consistently justified for any given trophic group, it is unclear whether interpretations of research syntheses adequately reflect the contributions of consumers to ecosystems. Using model communities assembled in experimental microcosms, we examined the relationship between four numerically dominant detritivore species and six ecosystem functions that underpin fundamental aspects of carbon and nitrogen cycling aboveand below-ground. We tested whether ecosystem responses to changes in detritivore identity depended upon species trait dissimilarity, food web compartment (aboveground, belowground, mixed) or number of responses considered (one to six). We found little influence of detritivore species identity on brown (i.e. soil-based) processes. Only one of four detritivore species uniquely influenced decomposition, and detritivore species did not vary in their influence on soil nitrogen pools (NO3 − and NH4 +), or root biomass. However, changes in detritivore identity influenced multiple aboveground ecosystem functions. That is, by serving as prey, ecosystem engineers and occasionally also as herbivores as well as detritivores, these species altered the strength of aboveground predator–herbivore interactions and plant–shoot biomass. Yet, dissimilarity of detritivore functional traits was not associated with dissimilarity of ecosystem functioning. These results serve as an important reminder that consumers influence ecosystem processes via multiple energy channels and that food web interactions set important context for consumer-mediated effects on multiple ecosystem functions. Given that species are being lost, gained and redistributed at unprecedented rates, we can anticipate that changes in species identity will have additional ecosystem consequences beyond those predicted by species’ primary functional role.
4

Birds, bats and arthropods in tropical agroforestry landscapes: Functional diversity, multitrophic interactions and crop yield

Maas, Bea 20 November 2013 (has links)
No description available.

Page generated in 0.0807 seconds