• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 19
  • 4
  • 4
  • 1
  • Tagged with
  • 72
  • 72
  • 22
  • 17
  • 14
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Coherent Radio Over Fiber Links for Broadband Wireless Access Networks

Chen, Xiang January 2017 (has links)
The ever-increasing demand for high date rate is beyond what is provided by the present wireless and wired access networks. Radio-over-fiber (RoF) technology which can provide broadband wireless access has been considered the most practical and efficient solution. In recent years, RoF with coherent detection has been shown to have better performance than that with direct detection in terms of receiver sensitivity and spectral efficiency. However, RoF with coherent detection suffers from phase noise introduced from both the transmitter and local oscillator (LO) laser sources, which degrades the performance significantly. This study is focused on coherent RoF links for broadband wireless access networks. The thesis consists of four parts. In the first part, a new approach to cancel the phase noise and the unstable frequency difference introduced from the transmitter and LO laser sources based on digital signal processing (DSP) in an RoF link with coherent detection is presented. The proposed schemes rival the RoF link with direct detection in complexity while maintaining a high receiver sensitivity. In addition, a high spectral efficiency coherent RoF link with phase noise cancellation, which can detect both intensity- and phase- modulated signals carried by the same optical carrier, is studied and demonstrated. In the second part, to achieve full-duplex transmission and increase the capacity of an RoF link, radio over wavelength division multiplexing passive optical network (WDM-PON) is studied. To eliminate the requirements of light sources and wavelength management at the optical network units (ONUs), which reduces the cost and eases the installation for a radio over WDM-PON system, a new approach to reuse the downstream wavelength at the ONU with coherent detection and DSP at the optical line terminal (OLT) is investigated. The performance in terms of error vector magnitude (EVM) and bit rate error (BER) is evaluated for both downlink and uplink. In the scheme, the coherent detection improves the receiver sensitivity for the uplink and compensate for the degraded data transmission performance due to the utilization of a wavelength-reused downstream optical signal. Furthermore, since the future internet traffic will become highly symmetric, a symmetrical radio over a colorless WDM passive optical network (PON) with wavelength reuse based on polarization multiplexing and coherent detection is proposed and studied. In the third part, a coherent RoF link based on optical single sideband with no optical carrier (OSSB) modulation with low-cost free-running laser sources for ultra-dense wavelength division multiplexing passive optical networks (UDWDM-PONs) is studied. In a UDWDM-RoF-PON, the channel spacing is very small, thus a WDM filter may not be able to de-multiplex the ultra-dense channels. However, through coherent detection, the channel separation can be realized by using electrical filters at the output of the coherent receiver. In addition, to utilize the spectrum in each channel more efficiently, OSSB modulation is employed. In the proposed scheme, an RoF signal based OSSB modulation with coherent detection is experimentally demonstrated. The channel spacing can be as narrow as 3 GHz. Finally, for 5th generation wireless systems (5G), multi-input and multi-output (MIMO) is a key technology which can multiple the capacity. To seamlessly integrate MIMO into RoF links, it is required that an RoF link can transmit multiple wireless signals over a single wavelength. To enable 4 × 4 MIMO, in the fourth part, an RoF link to transmit four wireless signals with an identical microwave center frequency without using frequency-division multiplexing (FDM) over a single optical wavelength based on optical independent sideband (OISB) modulation and optical orthogonal modulation incorporating optical coherent detection and digital signal processing (DSP) is studied. To increase the spectral efficiency further, a novel high spectral efficiency (20.62 bit/s/Hz) RoF link based on coherent detection and DSP with the spectral efficiency improved by employing both intensity and phase modulation and polarization multiplexing to transmit four microwave signals over a single optical carrier is investigated.
32

Spectral efficiency of CDMA based ad-hoc networks

Ahmed, Junaid January 2011 (has links)
Spectrum efficiency and energy efficiency are two important attributes driving innovation in wireless communication. Efficient spectrum utilization and sharing with multiple access techniques and using under-utilized spectra by cognitive radios is the current focus due to the scarcity and cost of the available radio spectrum. Energy efficiency to increase operating time of portable handheld devices like smartphones that handle simultaneous voice/video streaming and web browsing and battery powered nodes in a sensor network where battery capacity determines the lifetime of the network is another area attracting researchers. The focus of this thesis is the spectral efficiency of multicarrier code division multiple access (CDMA) in wireless ad-hoc networks. Furthermore, energy efficiency to maximize lifetime of a network are also studied.In a multicarrier CDMA system inter-carrier interference (ICI) due to carrier frequency offset and multiple access interference (MAI) are two major factors that deteriorate the performance. Previous work in this area has been mostly focused on simulation results due to the complexity of the analysis due to the large number of random variables involved. Taking into account accurate statistical models for ICI and MAI that account for the correlation between adjacent subcarriers, this thesis presents new mathematical analysis for the spectral efficiency of multicarrier CDMA communication systems over a frequency selective Rayleigh fading environment. We analyze and compare three multicarrier CDMA schemes which are multicarrier CDMA, multicarrier direct-sequence CDMA and multitone CDMA. We also present simulation results to confirm the validity of our analysis. We also analyze the performance of three simple multiple access techniques or coexistence etiquettes in detail, which are simple to implement and do not require any central control. Accurate interference models are developed and are used to derive accurate expressions for packet error rates in the case of direct sequence CDMA and slotted packet transmission schemes. These results are then used to study the performance of the coexistence etiquettes and compare them with each other. Finally we present a new joint node selection and power allocation strategy that increases lifetime of an ad-hoc network where nodes cooperate to enable diversity in transmission.
33

Energy Efficient Resource Allocation for Phantom Cellular Networks

Abdelhady, Amr Mohamed Abdelaziz 04 1900 (has links)
Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE. First, we consider sparsely deployed cells experiencing negligible interference and assume perfect channel state information (CSI). For this setting, we propose an algorithm that finds the SE and EE resource allocation strategies. Then, we compare the performance of both design strategies versus number of users, and phantom cells share of the total available resource units (RUs). We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It is found that increasing phantom cells share of RUs decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. Second, we consider the densely deployed phantom cellular networks and model the EE optimization problem having into consideration the inevitable interference and imperfect channel estimation. To this end, we propose three resource allocation strategies aiming at optimizing the EE performance metric of this network. Furthermore, we investigate the effect of changing some of the system parameters on the performance of the proposed strategies, such as phantom cells share of RUs, number of deployed phantom cells within a macro cell coverage, number of pilots and the maximum power available for transmission by the phantom cells BSs. It is found that increasing the number of pilots deteriorates the EE performance of the whole setup, while increasing maximum power available for phantom cells transmissions reduces the EE of the whole setup in a less severe way than increasing the number of pilots. It is found also that increasing phantom cells share increases the EE metric in the dense deployment case. Thus, it is always useful to allocate most of the network RUs to the phantom cells tier.
34

Spectrally and Energy Efficient Radio Resource Management for Multi-Operator Shared Networks

Aydin, Osman 22 April 2020 (has links)
Commercial mobile communication systems are mainly based on licensed frequency spectrum, and the license is very expensive as the spectrum is a sparse wireless resource. Therefore, sharing this wireless resource is an essential requirement not only at the present but also in the future considering trends like connectivity for everybody and everything. In this thesis, we study the sharing of wireless resources with different approaches for realizing fair, efficient, and predictable sharing solutions in a controlled manner. The efficient use of wireless channel resources is an important target to reduce the costs of network operation and deployment. To achieve this, we need practical scheduling algorithms for wireless resources, out of which several of them will be presented and analyzed in this work. Different optimization frameworks for the spectral efficiency utility are presented, with an individual focus on guaranteeing resource or rate fairness among the operators in a network with shared radio resources. Thus, the presented proposals will help the mobile network operators to overcome the issues of losing network control and traceability of used wireless resources in a shared environment. Besides this, emerging vertical industries, such as automotive, healthcare, industry 4.0, internet of things (IoT) industries will put a certain burden on the wireless networks asking for guaranteed service level requirement from the mobile network operators. In this regard, this thesis provides the necessary methods addressing these challenges with the help of scheduling methods which are based on the joint optimization of spectral and energy efficiency. Thus, wireless networks will be enabled as a service function in a controlled and scalable way for new emerging markets. Furthermore, the presented solutions t well with the requirements of fifth generation (5G) network slicing.
35

Physical Layer Security With Active Jamming Using NOMA.

Polisetti, Mounika January 2021 (has links)
This paper is persuaded to understand the physical layer security in wireless commu-nications utilizing NOMA (Non Orthogonal Multiple Access) concepts in the presence of an eavesdropper. Physical layer security maintains the confidentiality and secrecyof the system against eavesdroppers. We use the power domain in this paper, where NOMA allows many users to share resources side by side. Power allocation concern-ing channel condition is taken into consideration where user whose channel condition is weak is allocated with eminent power to directly decode the signal, whereas theuser with better channel condition applies successive interference cancellation (SIC)to decode the signal. Here, the base station communicates with the users and sends data signals while the eavesdropper secretly eavesdrops on the confidential informa-tion simultaneously. In this thesis, to improve the physical layer security, jamming method was usedwhere users are assumed to be in full duplex, send jamming signals to degrade the performance of the eavesdropper. Analytic expressions of CDF, PDF, outage proba-bility and secrecy capacity are obtained from analyzing the NOMA jamming scheme. The numerical results are evaluated with the simulations results and analysed theeffect of jamming on improving the performance of the NOMA system in presenceof an eavesdropper.
36

Spectral, Energy and Computation Efficiency in Future 5G Wireless Networks

Sun, Haijian 01 August 2019 (has links)
Wireless technology has revolutionized the way people communicate. From first generation, or 1G, in the 1980s to current, largely deployed 4G in the 2010s, we have witnessed not only a technological leap, but also the reformation of associated applications. It is expected that 5G will become commercially available in 2020. 5G is driven by ever-increasing demands for high mobile traffic, low transmission delay, and massive numbers of connected devices. Today, with the popularity of smart phones, intelligent appliances, autonomous cars, and tablets, communication demands are higher than ever, especially when it comes to low-cost and easy-access solutions. Existing communication architecture cannot fulfill 5G’s needs. For example, 5G requires connection speeds up to 1,000 times faster than current technology can provide. Also, from transmitter side to receiver side, 5G delays should be less than 1ms, while 4G targets a 5ms delay speed. To meet these requirements, 5G will apply several disruptive techniques. We focus on two of them: new radio and new scheme. As for the former, we study the non-orthogonal multiple access (NOMA) and as for the latter, we use mobile edge computing (MEC). Traditional communication systems allow users to communicate alternatively, which clearly avoids inter-user interference, but also caps the connection speed. NOMA, on the other hand, allows multiple users to transmit simultaneously. While NOMA will inevitably cause excessive interference, we prove such interference can be mitigated by an advanced receiver side technique. NOMA has existed on the research frontier since 2013. Since that time, both academics and industry professionals have extensively studied its performance. In this dissertation, our contribution is to incorporate NOMA with several potential schemes, such as relay, IoT, and cognitive radio networks. Furthermore, we reviewed various limitations on NOMA and proposed a more practical model. In the second part, MEC is considered. MEC is a transformation from the previous cloud computing system. In particular, MEC leverages powerful devices nearby and instead of sending information to distant cloud servers, the transmission occurs in closer range, which can effectively reduce communication delay. In this work, we have proposed a new evaluation metric for MEC which can more effectively leverage the trade-off between the amount of computation and the energy consumed thereby. A practical communication system for wearable devices is proposed in the last part, which combines all the techniques discussed above. The challenges for wearable communication are inherent in its diverse needs, as some devices may require low speed but high reliability (factory sensors), while others may need low delay (medical devices). We have addressed these challenges and validated our findings through simulations.
37

Spectral Efficiency and Fairness Maximization in Full-Duplex Cellular Networks

B. da Silva Jr., Jose Mairton January 2017 (has links)
Future cellular networks, the so-called 5G, are expected to provide explosive data volumes and data rates. To meet such a demand, the research communities are investigating new wireless transmission technologies. One of the most promising candidates is in-band full-duplex communications. These communications are characterized by that a wireless device can simultaneously transmit and receive on the same frequency channel. In-band full-duplex communications have the potential to double the spectral efficiencywhen compared to current half duplex systems. The traditional drawback of full-duplex was the interference that leaks from the own transmitter to its own receiver, the so- called self-interference, which renders the receiving signal unsuitable for communication.However, recent advances in self-interference suppression techniques have provided high cancellation and reduced the self-interference to noise floor levels, which shows full-duplex is becoming a realistic technology component of advanced wireless systems. Although in-band full-duplex promises to double the data rate of existing wireless technologies, its deployment in cellular networks is challenging due to the large number of legacy devices working in half-duplex. A viable introduction in cellular networks is offered by three-node full-duplex deployments, in which only the base stations are full-duplex, whereas the user- or end-devices remain half-duplex. However, in addition to the inherent self-interference, now the interference between users, the user-to-user interference, may become the performance bottleneck, especially as the capability to suppress self-interference improves. Due to this new interference situation, user pairing and frequency channel assignment become of paramount importance, because both mechanisms can help to mitigate the user-to-user interference. It is essential to understand the trade-offs in the performance of full-duplex cellular networks, specially three-node full-duplex, in the design of spectral and energy efficient as well as fair mechanisms. This thesis investigates the design of spectral efficient and fair mechanisms to improve the performance of full-duplex in cellular networks. The novel analysis proposed in this thesis suggests centralized and distributed user pairing, frequency channel assignment and power allocation solutions to maximize the spectral efficiency and fairness in future full-duplex cellular networks. The investigations are based on distributed optimization theory with mixed integer-real variables and novel extensions of Fast-Lipschitz optimization. The analysis sheds lights on two fundamental problems of standard cellular networks, namely the spectral efficiency and fairness maximization, but in the new context of full-duplex communications. The results in this thesis provide important understanding in the role of user pairing, frequency assignment and power allocation, and reveal the special behaviourbetween the legacy self-interference and the new user-to-user interference. This thesis can provide input to the standardization process of full-duplex communications, and have the potential to be used in the implementation of future full-duplex in cellular networks. / <p>QC 20170403</p>
38

Analysis and design of pilot-aided multicarrier systems over doubly selective channels with a local subcarrier processing constraint

Das, Sibasish 08 January 2008 (has links)
No description available.
39

Performance Evaluation of DS/CDMA Communications Systems Modulated with π/2-shift BPSK over Multipath Rayleigh Fading Channels

Galib, M.M.Asadullah, Yamazato, Takaya, Katayama, Masaaki, Ogawa, Akira 11 1900 (has links)
No description available.
40

Performance of Asynchronous Band-Limited DS/SSMA Systems

Shibata, Takafumi, Katayama, Masaaki, Ogawa, Akira 08 1900 (has links)
No description available.

Page generated in 0.0884 seconds