• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 7
  • 7
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 63
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Akustická simulace jedoucího automobilu / Acoustical simulation of going car

Lacko, Tomáš January 2011 (has links)
This project includes an overview of different processing methods phonograms. It focuses primarily on time - frequency analysis carried out using Fast Fourier Transform (STFT). The main essence is to evaluate the time - frequency analysis of recorded motor vehicle, driving at different options, together with an analysis of driver activity in these variants. Based on the results of the analysis deals with the creation of synthetic audio signals of motor vehicle records. Further addresses the creation of the program for acoustic simulation engine is running smoothly when driving a car. Processing recorded signals and their evaluation is transferred using Matlab 7.7.0 ( R2008 )
12

Vyhledávání CpG ostrůvků z DNA sekvencí / CpG islands search in DNA sequences

Nerušil, Václav January 2015 (has links)
This thesis focuses on searching for CpG islands of DNA sequences based on analysis of DNA spectrograms. The first part is theoretical and deals with the significance CpG island, and a description of the algorithms that are used or have been proposed for their search. The theoretical basis were implemented two algorithms based on the analysis of DNA spectrogram. One is based on the assumption that the region CpG islands has a higher content of guanine and cytosine than the region outside the CpG island and the other on the assumption of a higher frequency of occurrence of CG dinucleotides in the CpG island. The algorithms are implemented through MATLAB programming interface. For evaluation usefulness and effectiveness of solutions, results achieved on the selected DNA sequences implemented algorithms are compared with the results achieved by search engines CpG islands, which are freely available on the internet.
13

Acoustic Soil-Rock Probing : A Case Study in Gubbängen

Kalm, Helen January 2019 (has links)
Soil-rock probing (Jb-probing) is the most common probing method in Sweden. Due to the penetration capacity of the Jb-probing it can be performed in both soil and rock. However, the capacity also results in inherent limitations and uncertainties, such as the difficulty identifying the soil layer sequences of soft soils. In order to attain a more detailed soil layer sequence it is necessary to perform complementary probing and sampling methods, an inefficient and consequently costly procedure. By instead implementing non-interfering complementary methods performed simultaneously as the Jb-probing the method may be rationalized. The so-called acoustic Jb-probing method may be a potential complement to the Jb-probing. In this thesis a continued study of the acoustic Jb-probing method is performed by means of a case study in Gubbängen with the focus on the potential additional information that the spectrogram (a visual representation of the frequency spectra) may contain compared to the Jb-parameters alone. This was done by obtaining vibration signals during Jb-probing using a triaxle geophone installed four meters from the boreholes. Vibration signals were collected from 13 boreholes. The vibration signals were then analyzed in time- and frequency domain which were compared to corresponding Jb-parameters and classified soil types. The results showed that the clay layers held the most promise for discovering additional information in the spectrogram, however this does not exclude potential in other soil types. Additionally, it was shown that the geophone ought to be fastened in the ground in order to attain satisfactory data. Overall, the acoustic Jb-probing method is a favorable way of collecting and analyzing data, which with continued development of the operational and computational process may be an economical alternative to the conventional method.
14

Traffic Surveillance Using Low Cost Continuous Wave (CW) Doppler Radars

Yang, Wu 12 September 2012 (has links)
No description available.
15

Sparse Linear Modeling of Speech from EEG / Gles Linjära Modellering av Tal från EEG

Tiger, Mattias January 2014 (has links)
For people with hearing impairments, attending to a single speaker in a multi-talker background can be very difficult and something which the current hearing aids can barely help with. Recent studies have shown that the audio stream a human focuses on can be found among the surrounding audio streams, using EEG and linear models. With this rises the possibility of using EEG to unconsciously control future hearing aids such that the attuned sounds get enhanced, while the rest are damped. For such hearing aids to be useful for every day usage it better be using something other than a motion sensitive, precisely placed EEG cap. This could possibly be archived by placing the electrodes together with the hearing aid in the ear. One of the leading hearing aid manufacturer Oticon and its research lab Erikholm Research Center have recorded an EEG data set of people listening to sentences and in which electrodes were placed in and closely around the ears. We have analyzed the data set by applying a range of signal processing approaches, mainly in the context of audio estimation from EEG. Two different types of linear sparse models based on L1-regularized least squares are formulated and evaluated, providing automatic dimensionality reduction in that they significantly reduce the number of channels needed. The first model is based on linear combinations of spectrograms and the second is based on linear temporal filtering. We have investigated the usefulness of the in-ear electrodes and found some positive indications. All models explored consider the in-ear electrodes to be the most important, or among the more important, of the 128 electrodes in the EEG cap.This could be a positive indication of the future possibility of using only electrodes in the ears for future hearing aids.
16

Machine Anomaly Detection using Sound Spectrogram Images and Neural Networks

Hanjun Kim (6947996) 14 August 2019 (has links)
<div> <p>Sound and vibration analysis is a prominent tool used for scientific investigations in various fields such as structural model identification or dynamic behavior studies. In manufacturing fields, the vibration signals collected through commercial sensors are utilized to monitor machine health, for sustainable and cost-effective manufacturing.</p> <p> Recently, the development of commercial sensors and computing environments have encouraged researchers to combine gathered data and Machine Learning (ML) techniques, which have been proven to be efficient for categorical classification problems. These discriminative algorithms have been successfully implemented in monitoring problems in factories, by simulating faulty situations. However, it is difficult to identify all the sources of anomalies in a real environment. </p> <p>In this paper, a Neural Network (NN) application on a KUKA KR6 robot arm is introduced, as a solution for the limitations described above. Specifically, the autoencoder architecture was implemented for anomaly detection, which does not require the predefinition of faulty signals in the training process. In addition, stethoscopes were utilized as alternative sensing tools as they are easy to handle, and they provide a cost-effective monitoring solution. To simulate the normal and abnormal conditions, different load levels were assigned at the end of the robot arm according to the load capacity. Sound signals were recorded from joints of the robot arm, then meaningful features were extracted from spectrograms of the sound signals. The features were utilized to train and test autoencoders. During the autoencoder process, reconstruction errors (REs) between the autoencoder’s input and output were computed. Since autoencoders were trained only with features corresponding to normal conditions, RE values corresponding to abnormal features tend to be higher than those of normal features. In each autoencoder, distributions of the RE values were compared to set a threshold, which distinguishes abnormal states from the normal states. As a result, it is suggested that the threshold of RE values can be utilized to determine the condition of the robot arm.</p> </div> <br>
17

Novel diagnostic technologies for optical communication systems

Watts, Regan Trevor January 2008 (has links)
The objective of this thesis was to develop novel technologies for measuring the physical characteristics of high-speed pulse trains, for use in performance monitoring applications. This thesis describes the development of three separate techniques that perform measurements in either the time domain, frequency domain or the phase space of the optical signal. The first section investigates phase-sensitive pulse measurement techniques. A high- resolution SHG-FROG apparatus was custom-designed to measure 40GHz RZ pulse trains, from which an operational characterisation of a Mach-Zehnder modulator (MZM) was realised. A numerical model of a nonlinear pulse compressor was developed to compress 40GHz RZ pulses from 8.5ps down to 3.4ps. These pulses were time-division multiplexed to 80GHz, and phase-retrievals of the 80GHz pulse trains were measured. A comparison between the techniques of SHG-FROG and linear spectrogram has been undertaken for 10GHz pulse sources, exposing SHG-FROG's weaknesses at this particular repetition rate. The second section investigates a simple, time-averaged, nonlinear detection technique. Two-photon absorption in a GaAs/InGaAs quantum-well laser diode was used to measure the duty cycle (and by extension, the pulse duration) of a range of pulse sources. This technique was further developed to measure the extinction ratio of NRZ pulse trains. Additionally, the pulse duration of a mode-locked laser source was measured using the nonlinear absorption in a 1-m length of As2Se3 Chalcogenide glass fiber. This demonstrates that the nonlinear properties of this glass may well find application in future instrumentation. The third section investigates the development of an ultra-high resolution swept heterodyne spectrometer. This spectrometer was used to spectrally-distinguish repetitive 8-bit NRZ patterns at 2.5Gbit/s. It was also used to measure the chirp parameter of an X-cut LiNbO3 MZM, revealing a chirp parameter of απ/2 < 0.1 across a modulation band- width of 250-2500MHz. Additionally, the distinctive CW spectrum of a DFB laser diode was measured. Analysis of the measured CW spectrum yielded a linewidth enhancement factor of α≃ 1.8 and also the relative intensity noise of the DFB laser diode.
18

Investigation of doppler features resulting from wind turbine scattering

Naqvi, Aale R. 14 February 2011 (has links)
The rapid growth in the number of large wind farms has raised serious concerns about their effects on existing radar systems. The large size and rotational movement of the turbine blades can give rise to significant Doppler clutters, which interfere with the detection of moving targets such as aircraft and storms. A previous Air Force study has collected and analyzed the time-varying radar cross section resulting from the blade rotation of a single 1.5 MW turbine. However, multiple interactions taking place in a turbine were not studied in detail. Multiple interactions could play an important role in the propagation of radar signals through wind farms. This thesis sets out to more closely examine the various Doppler features resulting from the scattering due to a single turbine. Backscattered and forward scattered data are measured at Ku-band from various wind turbine models using a motorized turntable in the laboratory. The tested models include a 1:160 scale model turbine, a 3-arm wire model turbine, and a small wind turbine from Bergey Windpower with 2’ blades. The data are processed based on the short-time Fourier transform in order to relate the resulting time-varying Doppler features to various scattering mechanisms. The experimental findings are corroborated by simulations performed using the Numerical Electromagnetics Code (NEC). Furthermore, we propose a post-processing general method to reduce the intensity of the turbine scattered data. This method is applied to filter out simulated Doppler clutter from two different simulation techniques. First, the method is applied to remove the simulated Doppler clutter from the point scatterer model. Next, the algorithm is applied to simulated backscattered data generated using a high-frequency ray tracing code, Ahilo. / text
19

Novel diagnostic technologies for optical communication systems

Watts, Regan Trevor January 2008 (has links)
The objective of this thesis was to develop novel technologies for measuring the physical characteristics of high-speed pulse trains, for use in performance monitoring applications. This thesis describes the development of three separate techniques that perform measurements in either the time domain, frequency domain or the phase space of the optical signal. The first section investigates phase-sensitive pulse measurement techniques. A high- resolution SHG-FROG apparatus was custom-designed to measure 40GHz RZ pulse trains, from which an operational characterisation of a Mach-Zehnder modulator (MZM) was realised. A numerical model of a nonlinear pulse compressor was developed to compress 40GHz RZ pulses from 8.5ps down to 3.4ps. These pulses were time-division multiplexed to 80GHz, and phase-retrievals of the 80GHz pulse trains were measured. A comparison between the techniques of SHG-FROG and linear spectrogram has been undertaken for 10GHz pulse sources, exposing SHG-FROG's weaknesses at this particular repetition rate. The second section investigates a simple, time-averaged, nonlinear detection technique. Two-photon absorption in a GaAs/InGaAs quantum-well laser diode was used to measure the duty cycle (and by extension, the pulse duration) of a range of pulse sources. This technique was further developed to measure the extinction ratio of NRZ pulse trains. Additionally, the pulse duration of a mode-locked laser source was measured using the nonlinear absorption in a 1-m length of As2Se3 Chalcogenide glass fiber. This demonstrates that the nonlinear properties of this glass may well find application in future instrumentation. The third section investigates the development of an ultra-high resolution swept heterodyne spectrometer. This spectrometer was used to spectrally-distinguish repetitive 8-bit NRZ patterns at 2.5Gbit/s. It was also used to measure the chirp parameter of an X-cut LiNbO3 MZM, revealing a chirp parameter of απ/2 < 0.1 across a modulation band- width of 250-2500MHz. Additionally, the distinctive CW spectrum of a DFB laser diode was measured. Analysis of the measured CW spectrum yielded a linewidth enhancement factor of α≃ 1.8 and also the relative intensity noise of the DFB laser diode.
20

Novel diagnostic technologies for optical communication systems

Watts, Regan Trevor January 2008 (has links)
The objective of this thesis was to develop novel technologies for measuring the physical characteristics of high-speed pulse trains, for use in performance monitoring applications. This thesis describes the development of three separate techniques that perform measurements in either the time domain, frequency domain or the phase space of the optical signal. The first section investigates phase-sensitive pulse measurement techniques. A high- resolution SHG-FROG apparatus was custom-designed to measure 40GHz RZ pulse trains, from which an operational characterisation of a Mach-Zehnder modulator (MZM) was realised. A numerical model of a nonlinear pulse compressor was developed to compress 40GHz RZ pulses from 8.5ps down to 3.4ps. These pulses were time-division multiplexed to 80GHz, and phase-retrievals of the 80GHz pulse trains were measured. A comparison between the techniques of SHG-FROG and linear spectrogram has been undertaken for 10GHz pulse sources, exposing SHG-FROG's weaknesses at this particular repetition rate. The second section investigates a simple, time-averaged, nonlinear detection technique. Two-photon absorption in a GaAs/InGaAs quantum-well laser diode was used to measure the duty cycle (and by extension, the pulse duration) of a range of pulse sources. This technique was further developed to measure the extinction ratio of NRZ pulse trains. Additionally, the pulse duration of a mode-locked laser source was measured using the nonlinear absorption in a 1-m length of As2Se3 Chalcogenide glass fiber. This demonstrates that the nonlinear properties of this glass may well find application in future instrumentation. The third section investigates the development of an ultra-high resolution swept heterodyne spectrometer. This spectrometer was used to spectrally-distinguish repetitive 8-bit NRZ patterns at 2.5Gbit/s. It was also used to measure the chirp parameter of an X-cut LiNbO3 MZM, revealing a chirp parameter of απ/2 < 0.1 across a modulation band- width of 250-2500MHz. Additionally, the distinctive CW spectrum of a DFB laser diode was measured. Analysis of the measured CW spectrum yielded a linewidth enhancement factor of α≃ 1.8 and also the relative intensity noise of the DFB laser diode.

Page generated in 0.0526 seconds