• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5446
  • 1684
  • 844
  • 583
  • 317
  • 215
  • 115
  • 110
  • 95
  • 95
  • 95
  • 95
  • 95
  • 94
  • 66
  • Tagged with
  • 12122
  • 1639
  • 1563
  • 1560
  • 1260
  • 1138
  • 1075
  • 1024
  • 990
  • 978
  • 909
  • 881
  • 847
  • 815
  • 800
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Optical properties of single walled carbon nanotubes

Zeng, Hualing., 曾華凌. January 2008 (has links)
published_or_final_version / Physics / Master / Master of Philosophy
122

Laser and Fourier transform spectroscopy of gas phase molecules.

O'Brien, Leah Christine. January 1987 (has links)
Laser and Fourier transform spectroscopy were used to study a variety of gas phase molecules. A series of calcium and strontium monoalkoxides, CaOR and SrOR [R=H, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, CH₂(CH₂)₂CH₃, CH₂(CH₃)CH₂CH₃ and C(CH₃)₃] was studied by laser induced fluorescence and laser excitation techniques. The A - X and B - X electronic transitions were recorded. Calcium and strontium monocyclopentadienide, CaCp and SrCp, were produced in a Broida oven and the spectra were recorded at low resolution by laser techniques. The geometry of these molecules is like an "open-faced sandwich", with C₅ᵥ symmetry. The A²Π - X²Σ⁺ and B²Σ⁺ - X²Σ⁺ transitions of calcium and strontium monoisocyanate, CaNCO and SrNCO, were recorded for the first time. The spectra are interpreted as arising from a molecule with linear, ionic Sr⁺ - ⁻NCO structure. The 0-0 band of the A - X transition of SrNCO was recorded at high resolution and rotationally analyzed. The use of a 0.64 m monochromator, acting as a narrow bandpass filter, was necessary for recording the spectra and enabled the correct assignment of the rotational lines. By comparing the molecular constants of SrNCO with related molecules, the NCO⁻ ligand was found to be nitrogen bonding to the strontium atom. The Sr-N bond length was estimated to be 2.26 A in the ground state. The rotational analysis of the 0-0 band of the A²E₁/₂ - X²A₁ transition of the SrOCH₃ free radical has been carried out by laser excitation spectroscopy. The SrOCH₃ molecule was found to have C₃ᵥ symmetry with a Sr-O bond length of 2.12 A. There was no evidence of a Jahn-Teller effect in the A²E state. This work is the first high-resolution analysis of a metal alkoxide molecule. The rotationally cool (30 K) spectrum of the 0-0 vibrational band of the A²Δ - X²Π electronic transition for the diatomic free radical CCl was recorded using a Fourier transform spectrometer. The first rotational lines of the six strongest branches were observed, and transitions in three other branches were also detected. The CCl radical was produced in a corona-excited supersonic expansion source.
123

The evaluation and the application of array detectors for analytical luminescence spectroscopy.

Jalkian, Rafi Diran. January 1989 (has links)
The research described in this dissertation is the first evaluation and application of a new class of optical detectors, two-dimensional charge-coupled device (CCD), for low-light level chemiluminescence and other luminescence spectroscopies. This research conclusively demonstrates the superior qualitative and quantitative performance of spectrometric systems which employ these detectors. It is experimentally shown that a single detector element of a CCD has comparable or superior sensitivity to the most sensitive single channel detectors; photomultiplier tubes (PMT). The results from the application of the CCD detector system to molecular spectroscopies (fluorescence, chemiluminescence, fluorescence detection of high performance liquid chromatography (HPLC) effluents, and chemiluminescence detection of HPLC effluents) and atomic spectroscopies (spatially and spectrally resolved spark and direct current plasma are presented). The results of operating the CCD in specialized readout modes developed in this research termed charge dependent variable binning (CDVB), simultaneous variable binning (SVB), and continuous high speed spectral framing (CHSF) are described and applied. The CDVB and SVB techniques allow very sensitive quantitation of spectrally resolved and unresolved signals with very wide dynamic ranges without prior knowledge of the signal intensity. Finally, CHSF technique provides spectrally resolved temporal study of extended period luminescence emission with millisecond time resolution. The results of unique algorithms to restore the integrity of the image obtained with a two-dimensional CCD detector are described and applied. The algorithms implemented are for removing variations in detector sensitivity and responsivity and spectrometer efficiency, as well as providing digital image filtering.
124

XRF analysis of base metals prepared by fused bead method

Engelbrecht, Chantelle 27 February 2012 (has links)
M.Sc., Faculty of Science, University of the Witwatersrand, 2011 / The objective of the study was to investigate the preparation of glass beads for base metal analysis of mining samples prior to x-ray fluorescence analysis. The research method used included the investigation of different fluxes, oxidising, non-wetting agents, fusion temperature and time. The experiments were carried out using different fusion instruments: Electrofluxer and Katanax followed by both EDXRF and WDXRF analysis. The x-ray spectrometers were calibrated with standards prepared from pure oxides and the results compared to values determined by alternative techniques. Different statistical methods were used to validate the experiments including factorial designs. Not all the elements and oxides were recovered successfully, however, perfect glass beads were prepared. The two areas of concern were addressed successfully: firstly the loss of copper was overcome by using an alternative heating mechanism of the Katanax and sodium iodide as the non-wetting agent. Secondly, the sulphur was successfully oxidised and retained in the glass beads.
125

Sample manipulation and sample introduction techniques for inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry

Anderson, Stanley Thomas George January 1994 (has links)
A thesis submitted to the faculty of science, university of the Witwatersrand, Johannesburg,in fulfilment of the requirements for the degree of Doctor of Philosophy, 1994 / Alternative sample manipulation and sample introduction methods for inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS) have been investigated. The broad objectives of the study were to broaden the scope and improve the analytical performance of the techniques. The methods which were investigated were: 1) Laser ablation. This technique was used only in combination with ICP-MS. The technique was not applied to ICP-MS because the laser ablation system is dedicated to the ICP-MS instrument. The laser ablation system was applied to the direct analysis of solid refractory materials, without dissolution of the sample. The main advantages of avoiding the dissolution step are that the sample preparation is rapid, there is no dilution or contamination of the sample, and no loss of volatile analyte elements. The problems which were encountered with the use of laser ablation were firstly, poor precision of measurement relative to solution analysis due to sample particles of widely varying size entering the plasma, and secondly, memory effects when changing from one sample type to another. 2) Flow injection. This sample manipulation method was used in combination with pneumatic nebulization for ICP-AES and ICP-MS. The technique was applied to a number of different analytical problems, with the objectives of speeding up analysis times, increasing the matrix tolerance of the instruments, and automating a variety of sample preparation processes. 3) Hydride generation. This technique was applied to the determination of arsenic and selenium by ICP-AES and ICP-MS, using a novel type of gas, liquid separator. The advantages of the technique were the separation of the analyte elements from interfering matrix species, and increased analyte sensitivity due to the excellent transport efficiency of hydride generation relative to solution nebulization. Numerous advantages have been obtained from the application of these sample manipulation and sample introduction techniques. Methods have been developed for the analysis of materials which are not suited to conventional solution nebulization, and the techniques have been used to improve the efficiency of analysis, to achieve lower detection eliminate, and to eliminate interferences. / GR2017
126

Applications of Raman spectroscopy.

Sanches, Rosemary January 1977 (has links)
Thesis. 1977. M.S.--Massachusetts Institute of Technology. Dept. of Biology. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Includes bibliographical references. / M.S.
127

Electrochemical preconcentration and separation for elemental analysis using an inductively coupled plasma for atomic emission spectrometry with a direct sample insertion device

Habib, Magdi Maurice. January 1985 (has links)
No description available.
128

The Chemistry, spectroscopy and analytical applications of certain chemiluminescent reactions.

Hindson, Benjamin Joseph, mikewood@deakin.edu.au January 2001 (has links)
Chemiluminescence, the production of light from a chemical reaction, has found widespread use in analytical chemistry. Both tris (2, 2’-bipyridyl) ruthenium (II) and acidic potassium permanganate are chemiluminescence reagents that have been employed for the determination of a diverse range of analytes. This thesis encompasses some fundamental investigations into the chemistry and spectroscopy of these chemiluminescence reactions as well as extending the scope of their analytical applications. Specifically, a simple and robust capillary electrophoresis chemiluminescence detection system for the determination of codeine, O6-methylcodeine and thebaine is described, based upon the reaction of these analytes with chemically generated tris(2,2'-bipyridyl)ruthenium(III) prepared in sulfuric acid (0.05 M). The reagent solution was contained in a glass detection cell, which also held both the capillary and the cathode. The resultant chemiluminescence was monitored directly using a photomultiplier tube mounted flush against the base of the detection cell. The methodology, which incorporated a field amplification sample introduction procedure, realised detection limits (3a baseline noise) of 5 x 10~8 M for both codeine and O6-methylcodeine and 1 x 10~7 M for thebaine. The relative standard deviations of the migration times and the peak areas for the three analytes ranged from 2.2 % up to 2.5 % and 1.9 % up to 4.6 % respectively. Following minor instrumental modifications, morphine, oripavine and pseudomorphine were determined based upon their reaction with acidic potassium permanganate in the presence of sodium polyphosphate. To ensure no migration of the permanganate anion occurred, the anode was placed at the detector end whilst the electroosmotic flow was reversed by the addition of hexadimethrine bromide (0.001% m/v) to the electrolyte. The three analytes were separated counter to the electroosmotic flow via their interaction with a-cyclodextrin. The methodology realised detection limits (3 x S/N) of 2.5 x 10~7 M for both morphine and oripavine and 5 x 10~7 M for pseudomorphine. The relative standard deviations of the migration times and the peak heights for the three analytes ranged from 0.6 % up to 0.8 % and 1.5% up to 2.1 % respectively. Further improvements were made by incorporating a co-axial sheath flow detection cell. The methodology was validated by comparing the results realised using this technique with those obtained by high performance liquid chromatography (HPLC), for the determination of both morphine and oripavine in seven industrial process liquors. A complimentary capillary electrophoresis procedure with UV-absorption detection was also developed and applied to the determination of morphine, codeine, oripavine and thebaine in nine process liquors. The results were compared with those achieved using a standard HPLC method. Although over eighty papers have appeared in the literature on the analytical applications of acidic potassium permanganate chemiluminescence, little effort has been directed towards identifying the origin of the luminescence. It was found that chemiluminescence was generated during the manganese(III), manganese(IV) and manganese(VII) oxidations of sodium borohydride, sodium dithionite, sodium sulfite and hydrazine sulfate in acidic aqueous solution. From the corrected chemiluminescence spectra, the wavelengths of maximum emission were 689 ± 5 nm and 734 ± 5 nm when the reactions were performed in sodium hexametaphosphate and sodium dihydrogenorthophosphate or orthophosphoric acid environments respectively. The corrected phosphorescence spectrum of manganese(II) sulfate in a solution of sodium hexametaphosphate at 77 K, exhibited two peaks with maxima at 688 nm and 730 nm. The chemical and spectroscopic evidence presented strongly supported the postulation that the emission was an example of solution phase chemically induced phosphorescence of manganese(II). Thereby confirming earlier predictions that the chemiluminescence from acidic potassium permanganate reactions originated from an excited manganese(II) species. Additionally, these findings have had direct analytical application in that manganese(IV) was evaluated as a new reagent for chemiluminescence detection. The oxidations of twenty five organic and inorganic species, with solublised manganese(IV), were found to elicit analytically useful chemiluminescence with detection limits (3 x S/N) for Mn(II), Fe(II), morphine and codeine of 5 x 10-8 M, 2.5 x 10-7 M, 7.5 x 10-8 M and 5 x 10-8M, respectively. The corrected emission spectra from four different analytes gave wavelengths of maximum emission in the range from 733 nm up to 740 nm indicating that these chemiluminescence reactions also shared a common emitting species, excited manganese(II). Whilst several analytical problems were addressed in this thesis and answers to certain questions regarding the fundamentals of acidic potassium permanganate chemiluminescence were proposed, there are several areas that would benefit from further research. These are outlined in the final chapter of this thesis.
129

Silicon based terahertz emission and detection devices

Lv, Pencheng. January 2006 (has links)
Thesis (Ph.D.)--University of Delaware, 2006. / Principal faculty advisor: James Kolodzey, Electrical and Computer Engineering. Includes bibliographical references.
130

Molecular structures and pulsed discharge emission studies of volatile organic compound derivatives /

Osthoff, Ashley, January 2009 (has links) (PDF)
Thesis (M.S.)--Eastern Illinois University, 2009. / Includes bibliographical references.

Page generated in 0.0672 seconds