• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 6
  • 4
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 64
  • 22
  • 20
  • 13
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Gene Expression Profiling and the Role of HSF1 in Ovarian Cancer in 3D Spheroid Models

Paullin, Trillitye 17 November 2016 (has links)
Ovarian cancer is the most lethal gynecological cancer, with over 200,000 women diagnosed each year and over half of those cases leading to death. These poor statistics are related to a lack of early symptoms and inadequate screening techniques. This results in the cancer going undetected until later stages when the tumor has metastasized through a process that requires the epithelial to mesenchymal transition (EMT). In lieu of traditional monolayer cell culture, EMT and cancer progression in general is best characterized through the use of 3D spheroid models. In this study, we examine gene expression changes through microarray analysis in spheroid versus monolayer ovarian cancer cells treated with TGFβ to induce EMT. Transcripts that included Coiled-Coil Domain Containing 80 (CCDC80), Solute Carrier Family 6 (Neutral Amino Acid Transporter), Member 15 (SLC6A15), Semaphorin 3E (SEMA3E) and PIF1 5'-To-3' DNA Helicase (PIF1) were downregulated more than 10-fold in the 3D cells while Inhibitor Of DNA Binding 2, HLH Protein (ID2), Regulator Of Cell Cycle (RGCC), Protease, Serine 35 (PRSS35), and Aldo-Keto Reductase Family 1, Member C1 (AKR1C1) were increased more than 50-fold. Interestingly, stress responses and epigenetic processes were significantly affected by 3D growth. The heat shock response and the oxidative stress response were also identified as transcriptome responses that showed significant changes upon 3D growth. Subnetwork enrichment analysis revealed that DNA integrity (e.g. DNA damage, genetic instability, nucleotide excision repair, and the DNA damage checkpoint pathway) were altered in the 3D spheroid model. In addition, two epigenetic processes, DNA methylation and histone acetylation, were increased with 3D growth. These findings support the hypothesis that three dimensional ovarian cell culturing is physiologically different from its monolayer counterpart. The proteotoxic stress-responsive transcription factor HSF1 is frequently overexpressed in a variety of cancers and is vital to cellular proliferation and invasion in some cancers. Upon analysis of various patient data sets, we find that HSF1 is frequently overexpressed in ovarian tumor samples. In order to determine the role of HSF1 in ovarian cancer, inducible HSF1 knockdown cell lines were created. Knockdown of HSF1 in SKOV3 and HEY ovarian cancer cell lines attenuates the epithelial-tomesenchymal transition (EMT) in cells treated with TGFβ, as determined by western blot and quantitative RT-PCR analysis of multiple EMT markers. To further explore the role of HSF1 in ovarian cancer EMT, we cultured multicellular spheroids in a non-adherent environment to simulate early avascular tumors. In the spheroid model, cells more readily undergo EMT; however, EMT inhibition by HSF1 knockdown becomes more pronounced in the spheroid model. These findings suggest that HSF1 is important in the ovarian cancer TGFβ response and in EMT.
12

Accurate diagnosis of mismatch repair deficiency in colorectal cancer using high-quality DNA samples from cultured stem cells / 患者由来の大腸がん幹細胞から得た高品質DNAによるミスマッチ修復欠損に対する正確な診断検査法

Yamaura, Tadayoshi 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21686号 / 医博第4492号 / 新制||医||1036(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 妹尾 浩, 教授 小川 誠司, 教授 武田 俊一 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
13

Novel and efficient method for culturing patient-derived gastric cancer stem cells / 患者由来胃癌幹細胞の効率的な新規培養法

Morimoto, Tomonori 25 September 2023 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13573号 / 論医博第2299号 / 新制||医||1069(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 妹尾 浩, 教授 藤田 恭之, 教授 伊藤 貴浩 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
14

The Effect of E-cigarette Vape on Oral Cell Proliferation Using 3D Spheroids as a Preclinical Model

Chinnaiyan, Vikram 01 January 2023 (has links) (PDF)
E-cigarettes have recently become increasingly popular, especially amongst middle and high school students. Although they are marketed as safer alternatives to tobacco cigarettes, they produce toxic metals and carcinogenic nitrosamines. This thesis studies the effects of e-cigarette aerosol on the growth and proliferation of oral epithelial cells because the consequences of vaping, including a potential risk for aberrant growth leading to cancer, are not well understood. Cells were grown in matrigel, causing the formation of three-dimensional spheroids modeling the physiological architecture of the oral epithelium. Those spheroids were chronically exposed to vape with different treatment conditions to study the functional biological effects of the presence of nicotine, dosage, and different types of exposure. The diameter of the spheroids was measured throughout the process as an indicator of cell growth. It showed that the vape exposure, especially nicotine-rich aerosol, induces an increase in spheroid diameter in a dose-dependent manner. The increased cell growth is supported by enhanced metabolic activity as well as increased aldehyde dehydrogenase activity, a marker of stemness prominently upregulated in cancer stem cells. Protein was extracted at the end for protein expression analysis through Western blotting and the identification of the activation of survival signaling pathways and stem cell markers. Lastly, spheroids were co-cultured with Strep. mutans, a cariogenic bacterial resident in the oral cavity, and acutely exposed to vape. Co-culture with S. mutans did not significantly affect spheroid growth under the current experimental conditions or significantly change the expression patterns of proliferation and tumor initiation proteins. Future research will include tumorigenic assays and investigate how vape may induce carcinogenesis of the oral epithelium.
15

THE DESIGN AND CHARACTERIZATION OF MICROPHYSIOLOGICAL PLATFORMS TO MODEL THE HUMAN PLACENTA / MICROPHYSIOLOGICAL MODELS OF THE HUMAN PLACENTA

Wong, Michael K. January 2020 (has links)
The human placenta facilitates many key functions during pregnancy, including uterine invasion, vascular remodeling, hormone secretion, immune regulation, and maternal-fetal exchange. Placental research, however, has been limited in part by the unrepresentative nature of traditional models. The objective of this doctoral thesis was to build and characterize novel, in vitro models that reintegrated important anatomical and environmental elements of the human placenta, thus enabling more physiologically-accurate assessments of placental function. In our first model, we manipulated the thickness of the extracellular matrix surface to promote the self-assembly of trophoblast cells into three-dimensional (3D) aggregates that exhibited increased genetic and functional markers of syncytial fusion. In our second model, we established a high-throughput platform to generate 3D trophoblast spheroids that underwent dynamic invasion and migration, expressed transcriptomic profiles redolent of the extravillous trophoblast phenotype, and responded to various drugs relevant to pregnancy. In our third model, we developed a trophoblast-endothelial co-culture model of the placental barrier that underwent syncytial fusion, exhibited size-specific barrier permeability, and functioned under physiologically-relevant oxygen tensions. In conclusion, our models may each serve as valuable tools for researchers, contribute to investigations of different aspects of placental biology, and aid in the screening of drugs and toxins for pregnancy. / Thesis / Doctor of Philosophy (PhD) / The human placenta is an important organ that helps regulate the health of both the mother and fetus during pregnancy. Researchers have traditionally studied the placenta through the use of animals or isolated cells, but these have been criticized for not being similar enough to the human placenta. Our objective was to build models that better resembled the structure and environment experienced by the human placenta within the body, such that we could better study its function. During the course of my doctoral work, I built and analyzed three models of the human placenta using human cells that were grown in three dimensions, in multiple layers, and/or in a specific environment. Our first model demonstrated that placental cell behaviour and function can be controlled by altering the thickness of the surface we grew them on. Our second model grew placental cells in three-dimensions and mimicked the invasion process into the mother’s uterus during early pregnancy. Our third model grew placental cells with blood vessel cells to form the barrier that regulates the passage of all substances between the mother and fetus during pregnancy. We also tested the impact of low oxygen on the placental barrier’s formation and function. Overall, we discovered that placental cells could indeed function more similarly to how we expect them to in the body when we design platforms that better resemble their structure and environment. Our model development work provides new information about placental biology and may serve as valuable tools in research and drug development.
16

Metabolic Adaptations of Ovarian Cancer Metastases to Physiological Conditions and Disease Progression

Compton, Stephanie Lynn Edwards 11 April 2022 (has links)
Ovarian cancer is the fifth leading cause of all cancer deaths in women and the most lethal gynecologic cancer in the United States. During metastasis, cancer cells exfoliate from the primary tumor and aggregate to form spheroids, enhancing their survival within the peritoneal cavity during dissemination to a secondary outgrowth site. The inability of removal of these aggregates by traditional surgical interventions may contribute to the high recurrence and mortality rate of ovarian cancer diagnosed at late stages. Obesity, particularly abdominal obesity, has been shown to increase ovarian cancer risk and decrease survival. The recruitment of stromal vascular fraction (SVF) present in adipose tissue represents a growth and proliferation advantage to ovarian tumors, and endogenous sphingolipids like sphingosine-1-phosphate are increased in ovarian cancer patients. These conditions, combined with the physiological conditions within malignant ascites (hypoxia and low glucose), represent a physiological environment that can impact the metabolic responses of ovarian cancer spheroids. Here, we investigated the metabolic adaptations of serous ovarian cancer cells across the metastatic cycle and in conditions that mimic those of the peritoneal cavity and malignant ascites. We first investigated the different in metabolic responses between adherent monolayers and 3D spheroids. We confirmed that spheroids have a reduced metabolic rate and drug response that is affected by the incorporation of obese SVF into aggregates. To investigate these changes in the next stages of the metastatic cycle, we used time trials to observe how adherence of spheroids to a secondary site changes metabolic response and substrate utilization in physiological conditions. Adhesion of spheroids showed changes in energy metabolism and substrate utilization, switching from mainly glutamine oxidation to glucose oxidation that could support successful outgrowth. Spheroids also were resilient to culture conditions, even non-permissive conditions such as those found in the peritoneal cavity. Finally, we utilized human malignant ascites from ovarian cancer patients as a further investigation into conditions that imitate in vivo characteristics that could affect spheroid metabolism. Exposure to malignant ascites reduced spheroid viability as well as basal respiration and ATP synthesis. However, spare respiratory capacity was increased, and human spheroids changed their substrate utilization in response to ascites. Taken together, these studies provide an identification of metabolic switches across different stages of ovarian cancer metastasis that contribute to their survival, which represents an emerging target for prevention and treatment for individuals with ovarian cancer. / Doctor of Philosophy / Ovarian cancer is the deadliest reproductive cancer in women, and most women who are diagnosed will die from the disease because of its high recurrence rate and because it is typically detected at late stages. When ovarian cancer metastasizes, cells or cell clusters from the original tumor aggregate together to form balls of cells called spheroids, which move through the abdominal cavity to other sites to grow additional tumors. These spheroids are thought to contribute to recurrence of this cancer, since they cannot be removed by surgery. As these spheroids move through the abdominal cavity, they are exposed to an environment that has a low amount of oxygen and glucose. These spheroids may also be exposed to bioactive lipids and cells from the adipose tissue called stromal vascular fraction, both of which are related to obesity and may help cancer spheroids survive. The survival of these spheroids is in part related to how their metabolism functions, which may help them make energy and the building blocks needed to continue growing and form successful secondary tumors. Identifying how these spheroids change their metabolism at different points during the disease may help identify points that can be targeted to prevent changes in metabolism that could support their growth. This dissertation identified metabolic changes that occur in spheroids, in conditions that are similar to those spheroids would be exposed to in an abdominal cavity. First, we compared single layers of cells to spheroids and found that spheroids had a lower metabolic rate and lower drug response, which may help them survive in the abdominal cavity. Next, we allowed the spheroids to lay down and grow out, like they would when they found a new location during metastasis, to see how their metabolism changed and what substances they used to make energy in conditions that mimicked the abdominal cavity. As spheroids adhered, they changed their energy metabolism and switched the substances they used to make energy, all while continuing to survive and grow out even in conditions that were not supportive. These switches could help them grow out and successfully metastasize. Lastly, we used ascites fluid from human ovarian cancer patients and treated spheroids with this to see how their metabolism changed in response. While some aspects of metabolism and survival was reduced, their ability to increase their metabolism when stressed increased and human spheroids used nutrients to make energy differently. Overall, we show that across the stages of metastasis, ovarian cancer spheroids can change their metabolism in response to their environment. Identifying these metabolic switches helps us understand how successful metastasis happens, and can inform future targets to slow or prevent metastasis, prolonging the life of women who have been diagnosed with ovarian cancer.
17

Evaluation of Immunogene Therapy Using a Plasmid Encoding IL-15 Delivered by Electroporation in a 3D Tumor Model and a Mouse Melanoma Model

Marrero, Bernadette 02 November 2010 (has links)
Melanoma is an aggressive disease with few effective treatment options. Non-toxic, anti-tumor therapies and prophylactic approaches are currently being investigated to identify treatment options that will control and remove late-stage melanoma. The overall goal of this project was to establish an effective delivery method for a plasmid encoding human interleukin (phIL-15) into mouse melanoma cells (B16.F10) using the gene transfer technique electroporation (EP)1. The EP delivery phIL-15 was optimized using an in vitro 3D tumor model. The purpose was to translate these IL-15 delivery conditions into an in vivo mouse melanoma model to study IL-15 signal transduction and stimulate immune cells to destroy tumor antigens as well as promote an anti-tumor immune memory response. The in vitro 3D tumor model and the mouse model demonstrated similar expression patterns when delivering phIL-15 with different EP conditions. Intra-tumoral delivery using 500V/cm 20ms enhanced gene delivery and increased IL-15 protein expression compared to 1300V/cm 100μs. There was also a visible increase in transfection efficacy between tumor cells compared to skin cells when delivering pmIL-12 and phIL-15 plasmid constructs in vivo. The plasmid+EP groups 1300V/cm and 500V/cm stimulated increased expression of cytokines IL-1β, IL-6, INFγ, MIP-1β and TNFα. These EP groups also promoted tumor regression by up-regulating CD8+ T cells and CD4+ T cells which targeted melanoma. Regression and survival studies demonstrated that 73.3% of mice cleared B16.F10 cells when treated with phIL-xi15+1300V/cm and pVax+500V/cm. In addition, 53% of the mice responded to the phIL-15+500V/cm treatment group. Furthermore, 75% of the mice from group phIL-15+500V/cm survived secondary inoculation and tumor challenge. In conclusion, plasmid with encoding gene insert phIL-15 delivered by EP has the potential to act as an anti-tumor therapy because it promotes melanoma regression and enhances mouse survival through innate and adaptive cell-mediated immune responses.
18

Implantable neural spheroid networks utilizing a concave microwell array

Chang, Joon Young January 2013 (has links)
The goal of this study was to create pre-formed neural spheroid networks (NSN) on a polydimethyl siloxane (PDMS) concave microwell array for eventual implantation into the rat brain. Recent studies have shown that stem cells have great potential in treating various neurological insults of the central nervous system, ranging from traumatic brain and spinal cord injury, to neurodegenerative disorders. However, the use of stem cell lines in research are controversial due to the method of obtaining cells, in their formation of teratomas and degeneration into cancer cells, their non-specific differentiation, and lastly in their inability to control the location of neural connections. A novel approach to address this issue utilizes pre-formed neural networks consisting of neural spheroids on polymer scaffolds for the implantation into the rat brain. Yet, it was observed that the cylindrical shape of the wells hindered the transfer process. This study aimed to overcome the lack of neural spheroid network detachment by utilizing concave well structures, using a simple method developed in this laboratory. Primary neurons were isolated from pregnant Sprague Dawley rats at 16 ~ 17 days of gestation. Isolated neurons were cultured in PDMS wells with a concave structure and interconnected by rounded micro channels. It was reported previously that a concave structure enabled an easier and more efficient formation of spheroids, not to mention the ease in extraction of spheroid cells. Various studies have demonstrated the effectiveness of guidance channels in promoting neurite growth. Therefore, micro channels were integrated in the micro array design, and served as a guidance conduit to enhance neurite growth, and by association, spheroid interconnection. The primary neurons formed a spheroid structure after 3 days, upon which they began to sprout new neurites. By day 8, neurite connections peaked. Spheroid diameter underwent an initial decrease then stabilized on day 2. Various well diameters (300~700 um) and channel lengths (1.5 x diameter ~ 3 x diameter) were evaluated, with a 300 um well diameter and 450 um center-to-center channel length found to be optimal. The completed network was assessed for interconnection using calcium imaging and showed coordinated calcium signals between the neural spheroids. The network was then successfully transferred to a collagen matrigel and cultured for a week. The methodology showed an improvement in the transfer of networks, with about a 90% extraction rate. The viability of the NSN on the matrigel was assessed using a Live/Dead assay, and cells were found to have greater than 95% viability. The optimal hydrophilicity was determined for neurite extension and transfer of NSNs onto the matrigel. It was found that an incubation time between 4~6 hours was optimal. Future studies will involve the implantation of the NSN into the rat brain. Additionally, the use of neural progenitor and stem cell lines may provide an autologous source of cells which are immunocompatible with the host. In particular, marrow stromal cells are interesting in that they may also address the ethical concerns. A long term goal is to refine the methodology and apply this research to enable studies in the treatment of patients suffering from spinal cord injury and other neurodegenerative disorders.
19

Consequences of in vitro and in vivo environmental cues on localized delivery of MSCs

Burand Jr., Anthony John 01 January 2019 (has links)
Mesenchymal stromal cells (MSCs) are being explored for treatment of inflammatory, ischemic, autoimmune, and degenerative diseases. More and more of these diseases require MSCs to be delivered locally to the diseased site rather than systemically injected into patients. However, little is understood about whether cell cryopreservation or prelicensing will affect the efficacy of the locally injected product or how the local injection environment affects MSC expression of trophic factors and interactions with patient immune cells. Several groups have disagreed on whether cryopreservation hinders MSC potency and therefore it is important to understand the effects of cryopreservation on MSC function and in what contexts cryopreservation can be used. Therefore, a better understanding of MSC phenotype after local injection is needed so that cryopreservation and prelicensing can be optimized to modulate cell potency for more efficacious MSC products. Currently, it has been shown that in vivo there are rapid drastic shifts in gene expression by MSCs which have been locally injected. One of the most prominent gene changes is in the enzyme COX-2 which leads to the production of bioactive lipids called prostaglandins, namely PGE2. PGE2 has several functions depending on the context in which other cells encounter it. In order to model the gene changes that occur in vivo, in vitro cell aggregates termed spheroids have been utilized to study the effects of local injection of MSCs. MSC spheroids have shown more potency than their 2D counterparts in shifting macrophage polarization and rescue of cells from ischemic damage. This thesis examines how process variables like cryopreservation and prelicensing affect the efficacy of the MSC product in the context of local injection. Additionally, it shows how spheroid formation alters therapeutic factor expression and activity and how drug treatment and biomaterials can be utilized to modify potency of these cells. In Chapter 2, we demonstrate that cryopreservation in the context of an ischemia/reperfusion injury in the eye does not significantly decrease MSCs effectiveness in salvaging neuronal cells. However, IFN-γ, a commonly used prelicensing cytokine to increase MSC potency, led to a decrease in the effectiveness of MSCs in this model. Chapters 3 and 4 define the changes that occur to several of MSCs’ trophic factors including immunomodulatory and growth factors and how these alterations affect MSC interactions with macrophages and T cells. Because validation and tracking of locally injected products can be cost-prohibitive for many research groups, Chapter 5 lays out a low-cost method to track fluorescently labeled cells in local injections to skin to aid in minimization of variability in results obtained from animal wound healing models. These findings demonstrate that initial preparation of MSC therapeutics is critical to their efficacy in local injection. Therefore, careful testing of potency for large-scale MSC production pipelines should be evaluated to ensure the efficacy of the resulting product. Additionally, spheroids exhibit differences in the mechanisms of action due to alterations in their secretome which can be partly overcome with co-administration of steroids such as budesonide. Therefore, steroid co-administration with MSCs being considered for local application should be further explored for use in local delivery of MSCs for the treatment of inflammatory conditions. Finally, this research demonstrates the need to further understand the mechanisms by which spheroids alter their gene and trophic factor production to better tailor MSC therapies for disease specific localized injection.
20

Biophysical and biochemical control of three-dimensional embryonic stem cell differentiation and morphogenesis

Kinney, Melissa 08 June 2015 (has links)
Stem cell differentiation is regulated by the complex interplay of multiple parameters, including adhesive intercellular interactions, cytoskeletal and extracellular matrix remodeling, and gradients of agonists and antagonists that individually and collectively vary as a function of spatial locale and temporal stages of development. Directed differentiation approaches have traditionally focused on the delivery of soluble morphogens and/or the manipulation of culture substrates in two-dimensional, monolayer cultures, with the objective of achieving large yields of homogeneously differentiated cells. However, a more complete understanding of stem cell niche complexity motivates tissue engineering approaches to inform the development of physiologically relevant, biomimetic models of stem cell differentiation. The capacity of pluripotent stem cells to simultaneously differentiate toward multiple tissue-specific cell lineages has prompted the development of new strategies to guide complex, three-dimensional morphogenesis of functional tissue structures. The objective of this project was to characterize the spatiotemporal dynamics of stem cell biophysical characteristics and morphogenesis, to inform the development of ESC culture technologies to present defined and tunable cues within the three-dimensional spheroid microenvironment. The hypothesis was that the biophysical and biochemical cues present within the 3D microenvironment are altered in conjunction with morphogenesis as a function of stem cell differentiation stage. Understanding biochemical and physical tissue morphogenesis, including the relationships between remodeling of cytoskeletal elements and intercellular adhesions, associated developmentally relevant signaling pathways, and the physical properties of the EB structure together elucidate fundamental cellular interactions governing embryonic morphogenesis and cell specification. Together, this project has established a foundation for controlling, characterizing, and systematically perturbing aspects of stem cell microenvironments in order to guide the development of complex, functional tissue structures for regenerative therapies.

Page generated in 0.1246 seconds